(Ⅱ)若.且在區(qū)間上為減函數(shù).求實(shí)數(shù)a的取值范圍, 查看更多

 

題目列表(包括答案和解析)

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時,g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥
3
2
x
2
3
在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的關(guān)系.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo).導(dǎo)函數(shù)f(x)是減函數(shù),且f(x)>0,x0∈(0,+∞).g(x)=kx+m是y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
(1)用x0,f(x0),f(x0)表示m;
(2)證明:當(dāng)x∈(0,+∞)時,g(x)≥f(x);
(3)若關(guān)于x的不等式數(shù)學(xué)公式在(0,+∞)上恒成立,其中a,b為實(shí)數(shù),求b的取值范圍及a,b所滿足的關(guān)系.

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f'(x)是減函數(shù),且f′(x)>0。設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))的切線方程,并設(shè)函數(shù)g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)證明:當(dāng)x0∈(0,+∞)時,g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b所滿足的關(guān)系。

查看答案和解析>>

函數(shù)y=f(x)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)f'(x)是減函數(shù),且f′(x)>0。設(shè)x0∈(0,+∞),y=kx+m是曲線y=f(x)在點(diǎn)(x0,f(x0))的切線方程,并設(shè)函數(shù)g(x)=kx+m。
(1)用x0、f(x0)、f′(x0)表示m;
(2)證明:當(dāng)x0∈(0,+∞)時,g(x)≥f(x);
(3)若關(guān)于x的不等式x2+1≥ax+b≥上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及a與b所滿足的關(guān)系。

查看答案和解析>>

22.函數(shù)在區(qū)間(0,+∞)內(nèi)可導(dǎo),導(dǎo)函數(shù)是減函數(shù),且 設(shè)是曲線在點(diǎn)()處的切線方程,并設(shè)函數(shù)

   (Ⅰ)用、、表示m;

   (Ⅱ)證明:當(dāng)x∈(0,+∞)時,g(x)≥f(x);

   (Ⅲ)若關(guān)于的不等式上恒成立,其中a、b為實(shí)數(shù),求b的取值范圍及ab所滿足的關(guān)系.

查看答案和解析>>

一、選擇題:   CCDBACAB

二、填空題:

9、1;        10、;假;     11、2;         12、[0,2];  

13、; 14、;    15、; 16、①、③

三、解答題:

   17、解:(Ⅰ)

              

      (Ⅱ)

          

18、解:(Ⅰ)偶函數(shù)              …………4分

(Ⅱ)(略)                         …………8分

(Ⅲ)①  2                        …………10分

          …………12分

19、解:(Ⅰ)(略)用定義或?qū)?shù)證明    …………8分

       (Ⅱ)

          

20、解:(Ⅰ)

             

   21、解:(Ⅰ)在圖象上任取一點(diǎn)(x,y),則(x,y)關(guān)于(0,1)的對稱點(diǎn)為(-x,2-y)

       由題意得:

(Ⅱ)       (Ⅲ)(略)………………………………14分

   22、解:(Ⅰ)的不動點(diǎn)是-1,2  ………………3分

(Ⅱ)由得:,  由已知,此方程有相異二實(shí)根

 

(Ⅲ)設(shè)A(x1,y1), B(x2,y2)  直線是線段AB的垂直平分線,

  令A(yù)B的中點(diǎn),由(Ⅱ)知

        (當(dāng)且僅當(dāng)時,取等號)  又

 


同步練習(xí)冊答案