查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設,

若(2)中的滿足對任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過作軌跡的切線、,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一、              選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個備選項中,有且只有一項是符合要求的.

題號

1

2

3

4

5

6

7

8

答案

D

A

A

C

B

B

C

A

二、              填空題:本大題共7小題,每小題5分,共30分.其中13~15小題是選做題,考生只能選做兩題,若三題全答,則只計算前兩題得分.

9.             10.             11.

12.②③                                13.,

14.                     15.,

三、解答題:本大題共6小題,共80分.解答應寫出文字說明、證明過程或演算步驟.

16.    解:(Ⅰ)因為,,所以

   

因此,當,即)時,取得最大值

(Ⅱ)由,兩邊平方得

,即

因此,

17.    解:(Ⅰ)記“小球落入袋中”為事件,“小球落入袋中”為事件,則事件的對立事件為,而小球落入袋中當且僅當小球一直向左落下或一直向右落下,故

,

從而;

(Ⅱ)顯然,隨機變量,故

,

18.    解: 建立如圖所示的空間直角坐標系,

并設,則

    (Ⅰ),,

所以,從而得

(Ⅱ)設是平面

法向量,則由

,

可以取

    顯然,為平面的法向量.

    設二面角的平面角為,則此二面角的余弦值

19.    解:(Ⅰ)依題意,有),化簡得

),

這就是動點的軌跡的方程;

    (Ⅱ)依題意,可設、、,則有

,

兩式相減,得,由此得點的軌跡方程為

).

    設直線(其中),則

,

故由,即,解之得的取值范圍是

20.    解:(Ⅰ)依題意知:直線是函數(shù)在點處的切線,故其斜率

,

所以直線的方程為

    又因為直線的圖像相切,所以由

,

不合題意,舍去);

    (Ⅱ)因為),所以

時,;當時,

因此,上單調(diào)遞增,在上單調(diào)遞減.

因此,當時,取得最大值;

(Ⅲ)當時,.由(Ⅱ)知:當時,,即.因此,有

21.    解:(Ⅰ),;

(Ⅱ)依題意,得,,由此及

,

    由(Ⅰ)可猜想:).

    下面用數(shù)學歸納法予以證明:

    (1)當時,命題顯然成立;

    (2)假定當時命題成立,即有,則當時,由歸納假設及

,即

,

解之得

不合題意,舍去),

即當時,命題成立.

    由(1)、(2)知:命題成立.

(Ⅲ)

       

       

),則,所以上是增函數(shù),故當時,取得最小值,即當時,

    ,即

   

解之得,實數(shù)的取值范圍為


同步練習冊答案