(II)過雙曲線焦點F1的直線與雙曲線的兩支分別相交于A.B兩點.過焦點F2且與AB平行的直線與雙曲線分別相交于C.D兩點.若A.B.C.D這四點依次構(gòu)成平行四邊形ABCD.且.求直線AB的方程. 查看更多

 

題目列表(包括答案和解析)

設(shè)雙曲線的兩個焦點分別為F1、F2,離心率為2.
(I)求雙曲線的漸近線方程;
(II)過點N(1,0)能否作出直線l,使l與雙曲線C交于P、Q兩點,且,若存在,求出直線方程,若不存在,說明理由.

查看答案和解析>>

設(shè)經(jīng)過雙曲線的左焦點F1作傾斜角為的直線與雙曲線左右兩支分別交于點A,B.求
(I)線段AB的長;
(II)設(shè)F2為右焦點,求△F2AB的周長.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的兩個焦點分別為F1(-c,0),F(xiàn)2(c,0)(c>0),離心率e=2,且雙曲線C上的任意一點M滿足||MF1|-|MF2||=2.
(1)雙曲線C的方程;
(2)直線y=mx+1與雙曲線C的左支交于不同的兩點A、B,
(i)求m的取值范圍;
(ii)另一直線l經(jīng)過M(-2,0)及AB的中點,求直線l在y軸上的截距b的取值范圍.

查看答案和解析>>

已知雙曲線
x2
4
-
y2
b2
=1(b∈N*) 的兩個焦點為F1、F2,P是雙曲線上的一點,且滿足|PF1|-|PF2|=|F1F2|2,|PF2|<4,
(I)求b的值;
(II)拋物線y2=2px(p>0)的焦點F與該雙曲線的右頂點重合,斜率為1的直線經(jīng)過點F與該拋物線交于A、B兩點,求弦長|AB|.

查看答案和解析>>

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為3,直線y=2與C的兩個交點間的距離為
6

(I)求a,b;
(II)設(shè)過F2的直線l與C的左、右兩支分別相交于A、B兩點,且|AF1|=|BF1|,證明:|AF2|、|AB|、|BF2|成等比數(shù)列.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

  • <mark id="nxjtn"><label id="nxjtn"></label></mark>

          

          

                  3分

    18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

           可建立如圖所示的空間直角坐標系

           則       2分

           由  1分

          

          

           又平面BDF,

           平面BDF。       2分

       (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

          

          

           。

           即異面直線CM與FD所成角的大小為   3分

       (III)解:平面ADF,

           平面ADF的法向量為      1分

           設(shè)平面BDF的法向量為

           由

                1分

          

              1分

           由圖可知二面角A―DF―B的大小為   1分

    19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

          

           解得n=6,n=4(舍去)

           該小組中有6個女生。        5分

       (II)由題意,的取值為0,1,2,3。      1分

          

          

          

                 4分

           的分布列為:

    0

    1

    2

    3

    P

           …………1分

            3分

    20.解:(I)到漸近線=0的距離為,兩條準線之間的距離為1,

                   3分

                1分

       (II)由題意,知直線AB的斜率必存在。

           設(shè)直線AB的方程為

           由,

           顯然

          

                 2分

           由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點對稱。

           而    1分

               

           點O到直線的距離   2分

          

          

          

                   1分

    21.解:(I)

          

                  3分

       (Ⅱ)     1分

          

           上單調(diào)遞增;

           又當(dāng)

           上單調(diào)遞減。      1分

           只能為的單調(diào)遞減區(qū)間,

          

           的最小值為0。

       (III)

          

          

           于是函數(shù)是否存在極值點轉(zhuǎn)化為對方程內(nèi)根的討論。

           而

                1分

           ①當(dāng)

           此時有且只有一個實根

                               

           存在極小值點     1分

           ②當(dāng)

           當(dāng)單調(diào)遞減;

           當(dāng)單調(diào)遞增。

                 1分

           ③當(dāng)

           此時有兩個不等實根

          

           單調(diào)遞增,

           單調(diào)遞減,

           當(dāng)單調(diào)遞增,

          

           存在極小值點      1分

           綜上所述,對時,

           存在極小值點

           當(dāng)    

           當(dāng)存在極小值點

           存在極大值點      1分

       (注:本小題可用二次方程根的分布求解。)

    22.(I)解:由題意,      1分

                 1

           為首項,為公比的等比數(shù)列。

                     1分

                1分

       (Ⅱ)證明:

          

          

           構(gòu)造輔助函數(shù)

          

           單調(diào)遞增,

          

           令

           則

          

                   4分

       (III)證明:

          

          

          

           時,

          

          

           (當(dāng)且僅當(dāng)n=1時取等號)。      3分

           另一方面,當(dāng)時,

          

          

          

          

          

          

           (當(dāng)且僅當(dāng)時取等號)。

           (當(dāng)且僅當(dāng)時取等號)。

           綜上所述,有      3分

     


    同步練習(xí)冊答案