(II)若區(qū)間恒為函數(shù)的一個單調(diào)區(qū)間.求實(shí)數(shù)的最小值, 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)已知函數(shù)處的切線恰好為軸。 (I)求的值;(II)若區(qū)間恒為函數(shù)的一個單調(diào)區(qū)間,求實(shí)數(shù)的最小值;(III)記(其中),的導(dǎo)函數(shù),則函數(shù)是否存在極值點(diǎn)?若存在,請找出極值點(diǎn)并論證是極大值點(diǎn)還是極小值點(diǎn);若不存在,請說明理由。

查看答案和解析>>

設(shè)為奇函數(shù),為常數(shù)。

(I)求的值;

(II)證明在區(qū)間內(nèi)單調(diào)遞增;

(III)若對于區(qū)間上的每一個的值,不等式恒成立,求實(shí)數(shù)的取值范圍。

 

查看答案和解析>>

設(shè)為奇函數(shù),為常數(shù)。
(I)求的值;
(II)證明在區(qū)間內(nèi)單調(diào)遞增;
(III)若對于區(qū)間上的每一個的值,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

設(shè)為奇函數(shù),為常數(shù)。
(I)求的值;
(II)證明在區(qū)間內(nèi)單調(diào)遞增;
(III)若對于區(qū)間上的每一個的值,不等式恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

已知函數(shù)數(shù)學(xué)公式
(I)求函數(shù)F(x)的單調(diào)區(qū)間;
(II)若以函數(shù)y=F(x)(x∈(0,3])的圖象上任意一點(diǎn)P(x0,y0)為切點(diǎn)的切線的斜率數(shù)學(xué)公式恒成立,求實(shí)數(shù)a的最小值;
(III)是否存在實(shí)數(shù)m,使得函數(shù)數(shù)學(xué)公式的圖象與函數(shù)y=f(1+x2)的圖象恰有四個不同的交點(diǎn)?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

 

第I卷(選擇題 共60分)

一、選擇題(每小題5分,共60分)

1―6ADBADC  7―12ABCBBC

第Ⅱ卷(非選擇題 共90分)

二、填空題(每小題4分,共16分)

13.2  14.   15.  16.①③

三、解答題(本大題共6小題,共74分)

17.解:(I)

      

      

          4分

       又    2分

   (II)    

           2分

            •       

                    

                            3分

              18.(I)證明:由題意可知CD、CB、CE兩兩垂直。

                     可建立如圖所示的空間直角坐標(biāo)系

                     則       2分

                     由  1分

                    

                    

                     又平面BDF,

                     平面BDF。       2分

                 (Ⅱ)解:設(shè)異面直線CM與FD所成角的大小為

                    

                    

                     。

                     即異面直線CM與FD所成角的大小為   3分

                 (III)解:平面ADF,

                     平面ADF的法向量為      1分

                     設(shè)平面BDF的法向量為

                     由

                          1分

                    

                        1分

                     由圖可知二面角A―DF―B的大小為   1分

              19.解:(I)設(shè)該小組中有n個女生,根據(jù)題意,得

                    

                     解得n=6,n=4(舍去)

                     該小組中有6個女生。        5分

                 (II)由題意,的取值為0,1,2,3。      1分

                    

                    

                    

                           4分

                     的分布列為:

              0

              1

              2

              3

              P

                     …………1分

                      3分

              20.解:(I)到漸近線=0的距離為,兩條準(zhǔn)線之間的距離為1,

                             3分

                          1分

                 (II)由題意,知直線AB的斜率必存在。

                     設(shè)直線AB的方程為

                     由

                     顯然

                    

                           2分

                     由雙曲線和ABCD的對稱性,可知A與C、B與D關(guān)于原點(diǎn)對稱。

                     而    1分

                         

                     點(diǎn)O到直線的距離   2分

                    

                    

                    

                             1分

              21.解:(I)

                    

                            3分

                 (Ⅱ)     1分

                    

                     上單調(diào)遞增;

                     又當(dāng)

                     上單調(diào)遞減。      1分

                     只能為的單調(diào)遞減區(qū)間,

                    

                     的最小值為0。

                 (III)

                    

                    

                     于是函數(shù)是否存在極值點(diǎn)轉(zhuǎn)化為對方程內(nèi)根的討論。

                     而

                          1分

                     ①當(dāng)

                     此時有且只有一個實(shí)根

                                         

                     存在極小值點(diǎn)     1分

                     ②當(dāng)

                     當(dāng)單調(diào)遞減;

                     當(dāng)單調(diào)遞增。

                           1分

                     ③當(dāng)

                     此時有兩個不等實(shí)根

                    

                     單調(diào)遞增,

                     單調(diào)遞減,

                     當(dāng)單調(diào)遞增,

                    

                     存在極小值點(diǎn)      1分

                     綜上所述,對時,

                     存在極小值點(diǎn)

                     當(dāng)    

                     當(dāng)存在極小值點(diǎn)

                     存在極大值點(diǎn)      1分

                 (注:本小題可用二次方程根的分布求解。)

              22.(I)解:由題意,      1分

                           1

                     為首項(xiàng),為公比的等比數(shù)列。

                               1分

                          1分

                 (Ⅱ)證明:

                    

                    

                     構(gòu)造輔助函數(shù)

                    

                     單調(diào)遞增,

                    

                     令

                     則

                    

                             4分

                 (III)證明:

                    

                    

                    

                     時,

                    

                    

                     (當(dāng)且僅當(dāng)n=1時取等號)。      3分

                     另一方面,當(dāng)時,

                    

                    

                    

                    

                    

                    

                     (當(dāng)且僅當(dāng)時取等號)。

                     (當(dāng)且僅當(dāng)時取等號)。

                     綜上所述,有      3分

               


              同步練習(xí)冊答案