題目列表(包括答案和解析)
1 |
4 |
1 |
2 |
(
| ||
(0.1-2)(a3b-3)
|
(14分)已知函數(shù)的定義域是∈R,Z},且,,當(dāng)時,.
(1)求證:是奇函數(shù);
(2)求在區(qū)間Z)上的解析式;
(3)是否存在正整數(shù)k,使得當(dāng)x∈時,不等式有解?證明你的結(jié)論.(14分)在數(shù)列中,,.
(1)試比較與的大小關(guān)系;
(2)證明:當(dāng)≥時,.(14分) 已知二次函數(shù)為偶函數(shù),函數(shù)的圖象與直線y=x相切.
(1)求的解析式
(2)若函數(shù)上是單調(diào)減函數(shù),那么:
①求k的取值范圍;
②是否存在區(qū)間[m,n](m<n,使得在區(qū)間[m,n]上的值域恰好為[km,kn]?若存在,請求出區(qū)間[m,n];若不存在,請說明理由.一、選擇題(每小題5分,共50分)
1―5:ABCDC 6―10:BAAAD
二、填空題(每小題4分,共24分)
11.;12.99;13.207;14.0;15.2;
16.[1,2]或填[3,4]或填它們的任一子區(qū)間(答案有無數(shù)個)。
三、解答題(共76分)
17.(1)解:由
有………………2分
由,……………3分
由余弦定理……5分
當(dāng)…………7分
(2)由
則,……………………9分
由
……………………13分
18.(本小題滿分13分)
解:(1)①只安排2位接線員,則2路及2路以下電話同時打入均能接通,其概率
故所求概率;……………………4分
②“損害度” ………………8分
(2)∵在一天的這一時間內(nèi)同時電話打入數(shù)ξ的數(shù)學(xué)期望為
0×0.13+1×0.35+2×0.27+3×0.14+4×0.85+5×0.02+6×0.01=1.79
∴一周五個工作日的這一時間電話打入數(shù)ξ的數(shù)學(xué)期望等于5×1.79=8.95.……13分
19.(1)連結(jié)B1D1,過F作B1D1的垂線,垂足為K.
∵BB1與兩底面ABCD,A1B
FK⊥BB1
∴FK⊥B1D1 FK⊥平面BDD1B1,
B1D1∩BB1=B1
又AE⊥BB1
又AE⊥BD AE⊥平面BDD1B1 因此KF∥AE.
BB1∩BD=B
∴∠BFK為異面直線BF與AE所成的角,連結(jié)BK,由FK⊥面BDD1B1得FK⊥BK,
從而△BKF為Rt△.
在Rt△B1KF和Rt△B1D
又BF=.
∴異面直線BF與AE所成的角為arccos.……………………4分
(2)由于DA⊥平面AA1B由A作BF的垂線AG,垂足為G,連結(jié)DG,由三垂線定理
知BG⊥DG.
∴∠AGD即為平面BDF與平面AA1B所成二面角的平面角. 且∠DAG=90°
在平面AA1B1B中,延長BF與AA1交于點S.
|