求證:山高.[解] 得分評卷人 查看更多

 

題目列表(包括答案和解析)

如圖,靠山修建的一個水庫,從水壩的底部A測得水壩對面的山頂P的仰角為α,沿傾斜角為β的壩面向上走a米到水壩的頂部B測得對面山頂P的仰角為γ,
求證:山高h=
asinαsin(β+γ)sin(α-γ)

查看答案和解析>>

(2009•閘北區(qū)二模)如圖,AB是山頂一鐵塔,C是地面上一點.若已知塔高為h,在A處測得C點的俯角為α,在B處測得C點的俯角為β.
求證:山高H=
htanβtanα-tanβ

查看答案和解析>>

如圖,在山腳測得出山頂的仰角為,沿傾斜角為的斜坡向上走米到,在處測得山頂的仰角為,求證:山高

 


查看答案和解析>>

 如圖,在山腳測得出山頂的仰角為,沿傾斜角為的斜坡向上走米到,在處測得山頂的仰角為,求證:山高

 

查看答案和解析>>

如圖,AB是山頂一鐵塔,C是地面上一點.若已知塔高為h,在A處測得C點的俯角為α,在B處測得C點的俯角為β.
求證:山高

查看答案和解析>>

一.填空題:

1.;   2.;                   3.        4.2;        5.4;

6.45;      7.;    8.8;           9.3;        10.

    二.選擇題:11.B ;     12. C;     13. C.

三.解答題:

15.解:(Ⅰ)由已知可求得,正方形的面積,……………………………2分

所以,求棱錐的體積 ………………………………………4分

(Ⅱ)方法一(綜合法)

設線段的中點為,連接

為異面直線OC與所成的角(或其補角) ………………………………..1分

       由已知,可得

為直角三角形      ……………………………………………………………….2分

, ……………………………………………………………….4分

所以,異面直線OC與MD所成角的大小.   …………………………..1分

方法二(向量法)

以AB,AD,AO所在直線為軸建立坐標系,

, ……………………………………………………2分

,, ………………………………………………………………………………..2分

 設異面直線OC與MD所成角為,

.……………………………….. …………………………3分

 OC與MD所成角的大小為.…………………………………………………1分

16.[解一]由已知,在中,,………………………….2分

由正弦定理,得……………………………6分

因此,…………………………………………5分

.……………………………………………………………………2分

[解二] 延長交地平線與,…………………………………………………………………3分

由已知,得…………………………………………………4分

整理,得………………………………………………………………………8分

17.[解](Ⅰ)函數(shù)的定義域為…………………………………………………………2分

時,因為,所以,

,從而,……………………………………………………..4分

所以函數(shù)的值域為.………………………………………………………………..1分

(Ⅱ)假設函數(shù)是奇函數(shù),則,對于任意的,有成立,

時,函數(shù)是奇函數(shù).…………………………………………………………….3分

,且時,函數(shù)是非奇非偶函數(shù).………………………………………….1分

對于任意的,且,

……………………………………………..4分

時,函數(shù)是遞減函數(shù).………………………………………………..1分

18.[解](Ⅰ)因為,且邊通過點,所以所在直線的方程為.1分

兩點坐標分別為

   得

所以.  ……………………………………………..4分

又因為邊上的高等于原點到直線的距離.

所以,. ……………………………………….3分

(Ⅱ)設所在直線的方程為, ……………………………………………..1分

. …………………………………..2分

因為在橢圓上,所以. ………………….. …………..1分

兩點坐標分別為

,,

所以.……………………………………………..3分

又因為的長等于點到直線的距離,即.……………..2分

所以.…………………..2分

所以當時,邊最長,(這時

此時所在直線的方程為.  ……………………………………………..1分

17.[解](Ⅰ)由題意,……………………………6分

(Ⅱ)解法1:由

,,

,,

因此,可猜測)     ………………………………………………………4分

代入原式左端得

左端

即原式成立,故為數(shù)列的通項.……………………………………………………….3分

用數(shù)學歸納法證明得3分

解法2:由 ,

,且

,……… ……………………………………………………………..4分

所以

因此,,...,

將各式相乘得………………………………………………………………………………3分

(Ⅲ)設上表中每行的公比都為,且.因為

所以表中第1行至第9行共含有數(shù)列的前63項,故在表中第10行第三列,………2分

因此.又,所以.…………………………………..3分

…………………………………………2分

 

 

 


同步練習冊答案