1下列說法正確的是--------------------------------------------( )
A、 三角形的角平分線是射線! B、三角形三條高都在三角形內(nèi)。
C、 三角形的三條角平分線有可能在三角形內(nèi),也可能在三角形外。
D、三角形三條中線相交于一點(diǎn)。
2、在Rt△中,兩個(gè)銳角關(guān)系是-------------------------------------------( )
A、互余 B、互補(bǔ) C、相等 D、以上都不對(duì)
2、如圖,在△ABC中,∠A=800,∠ABC和∠ACB的外角平分
線相交于點(diǎn)D,那么∠BDC= 。
答案1.C 2.500
考查目標(biāo)二、三角形三邊關(guān)系
例1長(zhǎng)為2,3,5的線段,分別延伸相同長(zhǎng)度的線段后,能否組成三角形?若能,它能構(gòu)成直角三角形嗎?為什么?
解題思路:可以,設(shè)延伸部分為,則長(zhǎng)為,,的三條線段中,最長(zhǎng), ∵
∴只要,長(zhǎng)為,,的三條線段可以組成三角形
設(shè)長(zhǎng)為的線段所對(duì)的角為,則為△ABC的最大角
又由
當(dāng),即時(shí),△ABC為直角三角形。
例2.(2009年溫州)下列長(zhǎng)度的三條線段能組成三角形的是( )
A.1cm, 2cm, 3.5cm B.4cm, 5cm, 9cm
C.5cm,8cm, 15cm D.6cm,8cm, 9cm
解題思路:三角形任意兩邊之和大于第三邊 答案:D
練習(xí):已知三角形的兩邊長(zhǎng)分別為3cm和8cm,則此三角形的第三邊的長(zhǎng)可能是( )
A.4cm B.5cm C.6cm D.13cm
答案:C
考查目標(biāo)三、三角形全等
例1.(2009年浙江省紹興市)如圖,分別為的,邊的中點(diǎn),將此三角形沿折疊,使點(diǎn)落在邊上的點(diǎn)處.若,則等于( )
A. B. C . D.
解題思路:折疊前后的兩個(gè)三角形全等,,CD=DP=AD,再利用三角形中位線定理,答案B
例2、(2009陜西省太原市)如圖,,=30°,則的度數(shù)為( )
A.20° B.30° C.35° D.40°
解題思路:,選B
例3(2008年蘇州)如圖,四邊形ABCD的對(duì)角線AC與BD相交于O點(diǎn),∠1=∠2,∠3=∠4.
求證:(1)△ABC≌△ADC;(2)BO=DO.
解題思路:
證明:(1)在△ABC和△ADC中
∴△ABC≌△ADC.
(2)∵△ABC≌△ADC,∴AB=AD.又∵∠1=∠2,∴BO=DO.
練習(xí)。如圖,△ABC中,點(diǎn)D在BC上,點(diǎn)E在AB上,BD=BE,要使△ADB≌△CEB,還需添加一個(gè)條件.
(1)給出下列四個(gè)條件:
① ② ③ ④
請(qǐng)你從中選出一個(gè)能使的條件,并給出證明;
你選出的條件是 .
證明:
(2)在(1)中所給出的條件中,能使的還有哪些?
直接在題后橫線上寫出滿足題意的條件序號(hào): .
答案:第(1)題添加條件②,③,④中任一個(gè)即可,以添加②為例說明.
(1)②證明:∵AE=CD,BE=BD,∴AB=CB,又∠ABD=∠CBE,BE=BD
∴△ADB≌△CEB
(2)③④
過關(guān)測(cè)試
例7.如圖,將兩根鋼條,的中點(diǎn)O連在一起,使,可以繞著點(diǎn)0自由轉(zhuǎn)動(dòng),就做成了一個(gè)測(cè)量工件,則的長(zhǎng)等于內(nèi)槽寬AB,那么判定的理由是( )
A. 邊角邊 B.角邊角 C.邊邊邊 D.角角邊
解題思路::新的數(shù)學(xué)課程標(biāo)準(zhǔn)加強(qiáng)了數(shù)學(xué)知識(shí)的實(shí)踐與綜合應(yīng)用,從各地的中考應(yīng)用題可以看出,它已不再局限于傳統(tǒng)而古老的列方程(組)解應(yīng)用題這類題目,而是呈現(xiàn)了建模方式多元化的新特點(diǎn),幾何應(yīng)用題就是其中之一.本題利用全等三角形來解決實(shí)際中的工件的測(cè)量問題,其理論依據(jù)是“邊角邊”,故答案為A.
最新考題
三角形是平面幾何的重要知識(shí),是歷年中考的主要內(nèi)容之一,主要考查三角形的性質(zhì)和概念、三角形的內(nèi)角和定理、三邊關(guān)系定理、三角形全等的性質(zhì)與判定、三角形中位線定理以及特殊三角形(等腰三角形、直角三角形)的性質(zhì)與判定等。
考題以選擇為主要考查形式,也將三角形與四邊形、圓等知識(shí)組成綜合性題目進(jìn)行考查,
而三角形的運(yùn)動(dòng)、折疊、拼接形成新數(shù)學(xué)問題也逐漸增加。
考查目標(biāo)一、三角形的有關(guān)性質(zhì)
例1.(2009年濟(jì)寧市)如圖,△ABC中,∠A=70°,∠B=60°,點(diǎn)D在BC的延長(zhǎng)線上,則∠ACD等于
A. 100° B. 120° C. 130° D. 150°
解題思路: 運(yùn)用三角形外角的性質(zhì),答案C
例2.(2009年義烏)如圖,在中,,EF//AB,,則的度數(shù)為( )
A. B. C. D.
解題思路: 運(yùn)用三角形內(nèi)角和定理,答案D
例3(2009年湖北十堰市)下列命題中,錯(cuò)誤的是( ).
A.三角形兩邊之和大于第三邊
B.三角形的外角和等于360°
C.三角形的一條中線能將三角形面積分成相等的兩部分
D.等邊三角形既是軸對(duì)稱圖形,又是中心對(duì)稱圖形
解題思路:等邊三角形不是中心對(duì)稱圖形,答案D
練習(xí)
1、等腰三角形一腰上的中線分周長(zhǎng)為15和12兩部分,則此三角形底邊之長(zhǎng)為( )
A、7 B、11 C、7或11 D、不能確定
例6 在△ABC中,∠ACB=90°,AC=BC,直線MN經(jīng)過點(diǎn)C,且AD⊥MN于D,BE⊥MN于E.
(1)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖1的位置時(shí),求證:①△ADC≌△CEB;②DE=AD+BE;
(2)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖2的位置時(shí),求證:DE=AD-BE;
(3)當(dāng)直線MN繞點(diǎn)C旋轉(zhuǎn)到圖3的位置時(shí),試問DE,AD,BE具有怎樣的等量關(guān)系?請(qǐng)寫出這個(gè)等量關(guān)系,并加以證明.
證明:(1) ① ∵∠ACD=∠ACB=90°,∴∠CAD+∠ACD=90° ,∴∠BCE+∠ACD=90°,∴∠CAD=∠BCE,
∵AC=BC,∴△ADC≌△CEB.
②∵△ADC≌△CEB,∴CE=AD,CD=BE,∴DE=CE+CD=AD+BE.
(2)∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE ,又∵AC=BC,∴△ACD≌△CBE,
∴CE=AD,CD=BE,∴DE=CE-CD=AD-BE.
(3)當(dāng)MN旋轉(zhuǎn)到圖3的位置時(shí),AD,DE,BE所滿足的等量關(guān)系是DE=BE-AD(或AD=BE-DE,BE=AD+DE等).
∵∠ADC=∠CEB=∠ACB=90°,∴∠ACD=∠CBE,又∵AC=BC,∴△ACD≌△CBE,
∴AD=CE,CD=BE,∴DE=CD-CE=BE-AD.
評(píng)注:本題以直線MN繞點(diǎn)C旋轉(zhuǎn)過程中與△ABC的不同的位置關(guān)系為背景設(shè)置的三個(gè)小題,第(1)(2)小題為證明題,第(3)小題為探索性問題,考查同學(xué)們從具體、特殊的情形出發(fā)去探究運(yùn)動(dòng)變化過程中的規(guī)律的能力,試題的設(shè)計(jì)層層遞進(jìn),為發(fā)現(xiàn)規(guī)律、證明結(jié)論設(shè)計(jì)了可借鑒的過程,通過前面問題解決過程中所提供的思想方法,去解決類似相關(guān)問題,考查了同學(xué)們的后續(xù)學(xué)習(xí)的能力.
例5.如圖,在△ABC和△DEF中,D,E,C,F在同一直線上,下面有四個(gè)條件,請(qǐng)你在其中選3個(gè)作為題設(shè),余下的1個(gè)作為結(jié)論,寫一個(gè)真命題,并加以證明.
①AB=DE,②AC=DF,③∠ABC=∠DEF,④BE=CF.
已知:
求證:
證明:
解題思路:題中給出的四個(gè)等量關(guān)系,以其中三個(gè)為條件,另一個(gè)作為結(jié)論,總共可組成的命題(不論真假)有:①②③④ 、佗冖③ 、佗邰② ②③④① 共4個(gè)命題,其中真命題有2個(gè),①②④③或②③④①,選擇其中一個(gè),不難完成題目的解答.
解:如①②④③
證明:∵BE=CF ∴BC=EF 又∵AB=DE, AC=DF
∴△BAC≌△DEF(SSS)
∴∠ABC=∠DEF.
例4.如圖,已知CD⊥AB,BE⊥AC,垂足分別為D,E,BE,CD交于點(diǎn)O,
且AO平分∠BAC,那么圖中全等三角形共有 對(duì).
解題思路:在△ADO與△AEO,根據(jù)條件:CD⊥AB,BE⊥AC,AO平分∠BAC及隱含的條件AO=AO(公共邊),得到△ADO≌△AEO(AAS);從而得到AD=AE,故Rt△ADC≌Rt△AEB(HL);進(jìn)一步可推得△ABO≌△ACO(SAS),△BDO≌△CEO(AAS),因此,圖中全等三角形共有4對(duì).
例3.如圖.∠E=∠F=90°,∠B=∠C.AE=AF,給出下列結(jié)論:
①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.
其中正確的結(jié)論是 .
(注:將你認(rèn)為正確的結(jié)論都填上.)
解題思路:根據(jù)已知“∠E=∠F=90°,∠B=∠C.AE=AF”可得△ABE≌△ACF,因此有∠EAB=∠FAC,BE=CF,AC=AB,所以①、②正確;因?yàn)椤?i>CAB=∠BAC,∠B=∠C ,AC=AB,所以△ACN≌△ABM,故③也正確;根據(jù)條件,無法推出CD=DN,故④不正確.所以,正確的結(jié)論是①、②、③.
評(píng)注:將多項(xiàng)選擇以填空題的形式出現(xiàn),是近幾年出現(xiàn)的新題型,因答案的不唯一,加大了問題的難度,我們只有對(duì)所給的選項(xiàng)一一排查,才能得到正確的答案.
例2 如圖所示,在△ABC和△DCB中,AB=DC,要使△ABO≌△DCO,請(qǐng)你補(bǔ)充條件_____________(只要填寫一個(gè)你認(rèn)為合適的條件).
解題思路:由AB=DC以及圖形隱含的對(duì)頂角相等:∠AOB=∠DOC可知,要使△ABO≌△DCO,根據(jù)(AAS)識(shí)別法,直接可補(bǔ)充∠A=∠D或∠ABO=∠DCO.間接可補(bǔ)充:AC=DB.
評(píng)注:本題是一道結(jié)論開放性試題,由于全等三角形的識(shí)別方法有(SSS)(SAS)(ASA)(AAS)和直角三角形的(HL)識(shí)別法,因此,這類題目具有答案不唯一的特點(diǎn).在添加條件時(shí),要結(jié)合圖形,挖掘隱含的公共邊、公共角、對(duì)頂角等條件.
例1 如圖,在△ABC與△DEF中,給出以下六個(gè)條件中(1)AB=DE(2)BC=EF(3)AC=DF (4)∠A=∠D(5)∠B=∠E(6)∠C=∠F,以其中三個(gè)作為已知條件,不能判斷△ABC與△DEF全等的是( )
A.(1)(5)(2) B.(1)(2)(3)
C.(4)(6)(1) D.(2)(3)(4)
解題思路:根據(jù)全等三角形的識(shí)別方法及給出的四個(gè)答案,一一加以辨別,因?yàn)橛?SAS)識(shí)別法中,兩邊對(duì)應(yīng)相等的話,一定要夾角對(duì)應(yīng)相等,所以答案(D)不能判斷△ABC與△DEF全等.
38. own 擁有,自己的 on one's own = by oneself
of one's own …自己所有的 I own a shop.
|
|
版權(quán)所有:()
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com