遞等式計算,寫出必要的計算過程,能簡便計算的用簡便方法計算:
(1)0.3×(1×0.5÷1×0.5)
(2)1.25×6.4×2.5×5
(3)4.8×2.5+17.22÷2.1
(4)25.2×(0.32÷0.4)+8.6
(5)3.25×4.8+7.75×4.8-4.8
(6)6.4÷[(22.6-8.4×1.5)÷2.5].
解:(1)0.3×(1×0.5÷1×0.5)
=0.3×(0.5×0.5)
=0.3×0.25
=0.075;
(2)1.25×6.4×2.5×5
=1.25×8×0.2×4×2.5×5
=(1.25×8)×(4×2.5)×(5×0.2)
=10×10×1
=100;
(3)4.8×2.5+17.22÷2.1
=1.2×4×2.5+8.2
=1.2×(4×2.5)+8.2
=1.2×10+8.2
=12+8.2
=20.2;
(4)25.2×(0.32÷0.4)+8.6
=25.2×0.8+8.6
=20.16+8.6
=28.76;
(5)3.25×4.8+7.75×4.8-4.8
=(3.25+7.75-1)×4.8
=10×4.8
=48;
(6)6.4÷[(22.6-8.4×1.5)÷2.5]
=6.4÷[(22.6-12.6)÷2.5],
=6.4÷[10÷2.5],
=6.4÷4,
=1.6.
分析:(1)括號內(nèi)從左往右依次運算,再算括號外的;
(2)把6.4看作8×0.2×4,運用乘法交換律與結(jié)合律簡算;
(3)乘法和除法同時計算,在計算4.8×2.5時,把4.8看作1.2×4,運用乘法結(jié)合律簡算;
(4)先算括號內(nèi)的,再算括號外的乘法,最后算加法;
(5)運用乘法分配律簡算;
(6)先算小括號內(nèi)的乘法,再算小括號內(nèi)的減法,然后算中括號內(nèi)的,最后算括號外的.
點評:考查了小數(shù)的四則混合運算,注意運算順序和運算法則,靈活運用所學的運算定律簡便計算.