【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C: (a>b>0)經(jīng)過(guò)點(diǎn)(1,e),其中e為橢圓的離心率.F1、F2是橢圓的兩焦點(diǎn),M為橢圓短軸端點(diǎn)且△MF1F2為等腰直角三角形.
(1)求橢圓C的方程;
(2)設(shè)不經(jīng)過(guò)原點(diǎn)的直線l與橢圓C相交于A、B兩點(diǎn),第一象限內(nèi)的點(diǎn)P(1,m)在橢圓上,直線OP平分線段AB,求:當(dāng)△PAB的面積取得最大值時(shí)直線l的方程.
【答案】(1) .(2) .
【解析】試題分析:(1)根據(jù)等腰三角形的性質(zhì)及點(diǎn)在橢圓上,結(jié)合性質(zhì) ,列出關(guān)于 、 、的方程組,求出 、 、,即可得結(jié)果;(2)設(shè)出直線方程,直線方程與橢圓方程聯(lián)立消去可得根據(jù)韋達(dá)定理、弦長(zhǎng)公式以及三角形面積公式可得,換元后,利用導(dǎo)數(shù)求出三角形面積最大時(shí)的 的取值即可得到直線方程.
試題解析: (1)∵橢圓+=1經(jīng)過(guò)(1,e),
∴+=1,
又e=,∴+=1,解之得b2=1,
∴橢圓方程為+y2=1.
又△MF1F2為等腰直角三角形,
∴b=c=1,a=,
故橢圓方程為+y2=1.
故P(1,),
由題意,當(dāng)直線l垂直于x軸時(shí)顯然不合題意.
設(shè)不經(jīng)過(guò)原點(diǎn)的直線l的方程y=kx+t(t≠0)交橢圓C于A(x1,y1),B(x2,y2),
由消去y得(1+2k2)x2+4ktx+2t2-2=0,
Δ=(4kt)2-4(1+2k2)·(2t2-2)=16k2-8t2+8>0,
∴x1+x2=-,y1+y2=k(x1+x2)+2t=,
x1x2=,
直線OP方程為y=x且OP平分線段AB,
∴=×,解得k=-.
∴|AB|=·
=,
又∵點(diǎn)P到直線l的距離d==h,
∴S△PAB=|AB|h=.
設(shè)f(t)=(-t)2(4-2t2)
=-2t4+4t3-8t+8,
由直線l與橢圓C相交于A、B兩點(diǎn)可得-<t<.
求導(dǎo)可得t=-時(shí)f(t)在(-,)上有最大值,此時(shí)S△PAB取得最大值,
此時(shí)直線l的方程y=-x-.
【方法點(diǎn)晴】本題主要考查待定系數(shù)求橢圓方程以及直線與橢圓的位置關(guān)系,屬于難題.用待定系數(shù)法求橢圓方程的一般步驟;①作判斷:根據(jù)條件判斷橢圓的焦點(diǎn)在軸上,還是在軸上,還是兩個(gè)坐標(biāo)軸都有可能;②設(shè)方程:根據(jù)上述判斷設(shè)方程或 ;③找關(guān)系:根據(jù)已知條件,建立關(guān)于、、的方程組;④得方程:解方程組,將解代入所設(shè)方程,即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車(chē)早上9點(diǎn)出發(fā),下午2點(diǎn)到達(dá)目的地,平均每小時(shí)行駛60千米.這輛汽車(chē)一共行駛了多少千米?
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:
【題目】用同樣的方磚給教室鋪地面,如果用邊長(zhǎng)40cm的方磚需要100塊,如果用邊長(zhǎng)是50cm的方磚需要多少塊?
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:
【題目】估計(jì)下面各題的得數(shù)是幾十多。
24+54(____十多)
35+47(____十多)
23+49(____十多)
34+58(____十多)
38+40(____十多)
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:
【題目】圓柱的側(cè)面沿直線剪開(kāi),在下列的圖形中,不可能出現(xiàn)( )
A.長(zhǎng)方形或正方形
B.三角形
C.平行四邊形
查看答案和解析>>
科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校要召開(kāi)秋季運(yùn)動(dòng)會(huì),體育組的老師們?cè)诓賵?chǎng)上畫(huà)跑道,最內(nèi)圈跑道的彎道半徑大約是15米,每條跑道寬0.8米,直道部分全長(zhǎng)是106米
(1)最內(nèi)圈的彎道部分全長(zhǎng)是( )米
A、15π
B、30π
C、60π
D、7.5π
(2)靠?jī)?nèi)第二圈的彎道部分全長(zhǎng)是( )米
A、15π
B、30π
C、(15+0.8)π
D、2(15+0.8)π
(3)相鄰兩條跑道的彎道部分相差( )米
A、0.8π
B、15.8π
C、(15-0.8)π
D、1.6π
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com