【題目】設函數(shù), 表示導函數(shù).
(1)當時,求函數(shù)在點處的切線方程;
(2)討論函數(shù)的單調區(qū)間;
(3)對于曲線上的不同兩點,求證:存在唯一的,使直線的斜率等于.
【答案】(1)(2)見解析(3)見解析
【解析】試題分析:
(1)將 代入函數(shù)的方程,結合導函數(shù)與函數(shù)切線的關系求解函數(shù)的切線方程即可;
(2)首先求得 ,然后結合導函數(shù)的性質分類討論實數(shù) 的取值范圍即可得出函數(shù)的單調區(qū)間;
(3)首先證明點 存在,然后利用一次函數(shù)的單調性證明 的唯一性即可.
試題解析:
(1)時, , , , 在點處的切線方程為;
(2), 的定義域為
當時, 在區(qū)間單調遞增;
當時, 在區(qū)間單調遞增,在區(qū)間單調遞減.
(3)∵,∴,化簡得
即,且唯一.
設,則,
再設, ,∴,
∴在是增函數(shù),
∴,同理,
∴方程在有解.
∵一次函數(shù)在 是增函數(shù),
∴方程在有唯一解,命題成立.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)在定義域內的極值點的個數(shù);
(2)若函數(shù)在處取得極值,且對恒成立,求實數(shù)的取值范圍;
(3)當且時,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記表示中的最大值,如,已知函數(shù).
(1)求函數(shù)在上的值域;
(2)試探討是否存在實數(shù), 使得對恒成立?若存在,求的取值范圍;
若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為.
(Ⅰ)求滿足的概率;
(Ⅱ)設三條線段的長分別為和5,求這三條線段能圍成等腰三角形(含等邊三角形)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,cos C=.
(1)若·=,求c的最小值;
(2)設向量x=(2sin B,-),y=,且x∥y,求sin(B-A)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以原點為極點, 軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的直角坐標方程;
(2)已知直線與軸的交點為,與曲線的交點為, ,若的中點為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中裝有編號為的3個黑球和編號為的2個紅球,從中任意摸出2個球.
(Ⅰ)寫出所有不同的結果;
(Ⅱ)求恰好摸出1個黑球和1個紅球的概率;
(Ⅲ)求至少摸出1個紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com