【題目】已知等腰三角形一腰上的中線將它的周長分成9cm和12cm兩部分,則等腰三角形的底邊長為( )
A.9cm
B.5cm
C.6cm或5cm
D.5cm或9cm

【答案】D
【解析】根據(jù)題意畫出圖形,如圖所示,

設(shè)等腰三角形的腰長AB=AC=2x,BC=y,

∵BD是腰上的中線,∴AD=DC=x,①若AB+AD的長為12,則2x+x=12,解得x=4,則x+y=9,即4+y=9,解得y=5,所以等腰三角形的底邊為5;②若AB+AD的長為9,則2x+x=9,解得x=3,則x+y=12,即3+y=12,解得y=9,所以等腰三角形的底邊為9;

所以答案是:D.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的“三線”的相關(guān)知識,掌握1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi),以及對等腰三角形的性質(zhì)的理解,了解等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在聯(lián)歡會上,有A、B、C三名選手站在一個三角形的三個頂點(diǎn)位置上,他們在玩搶凳子游戲,要求在他們中間放一個木凳,誰先搶到凳子誰獲勝,為使游戲公平,則凳子應(yīng)放的最適當(dāng)?shù)奈恢檬窃凇?/span>ABC ( )

A. 三邊中線的交點(diǎn) B. 三條角平分線的交點(diǎn) C. 三邊中垂線的交點(diǎn) D. 三邊上高的交點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點(diǎn)P(a﹣2,a+3)在y軸上,則點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2020年南充市各級各類學(xué)校學(xué)生人數(shù)約為1 150 000人,將1 150 000 用科學(xué)計(jì)數(shù)法表示為(

A.1.15×106B.1.15×107C.11.5×105D.0.115×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為獎勵在趣味運(yùn)動會上取得好成績的員工,計(jì)劃購買甲、乙兩種獎品共20件,其中甲種獎品每件40元,乙種獎品每件30元.

(1)如果購買甲、乙兩種獎品共花費(fèi)了650元,求甲、乙兩種獎品各購買了多少件;

(2)如果購買乙種獎品的件數(shù)不超過甲種獎品件數(shù)的2倍,總花費(fèi)不超過680元,求該公司有哪幾種不同的購買方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與反比例函數(shù)的圖象相交于兩點(diǎn).

(1)求的值;

(2)直線與直線相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn).若,求的值;

(3)直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)在拋物線上.

(1)求拋物線的解析式;

(2)如圖1,點(diǎn)的坐標(biāo)為,直線交拋物線于另一點(diǎn),過點(diǎn)軸的垂線,垂足為,設(shè)拋物線與軸的正半軸交于點(diǎn),連接,求證;

(3)如圖2,直線分別交軸,軸于兩點(diǎn),點(diǎn)從點(diǎn)出發(fā),沿射線方向勻速運(yùn)動,速度為每秒個單位長度,同時點(diǎn)從原點(diǎn)出發(fā),沿軸正方向勻速運(yùn)動,速度為每秒1個單位長度,點(diǎn)是直線與拋物線的一個交點(diǎn),當(dāng)運(yùn)動到秒時,,直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】過點(diǎn)A(﹣3,5)和點(diǎn)B(﹣3,2)作直線,則直線AB(
A.平行于x軸
B.平行于y軸
C.與y軸相交
D.垂直于y軸

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩邊長分別為5,12的直角三角形,其斜邊上的中線長為___________________.

查看答案和解析>>

同步練習(xí)冊答案