【題目】如圖,拋物線與軸交于A,B兩點(點A在點B的左側(cè)),直線與拋物線交于兩點,其中點的橫坐標為2.
(1)求A,B兩點的坐標及直線AC的表達式;
(2)P是線段AC上一動點(P與A,C不重合),過點P作軸的平行線交拋物線于點E,求面積的最大值;
(3)點H是拋物線上一動點,在軸上是否存在點F,使得四個點為頂點的四邊形是平行四邊形?如果存在請直接寫出所有滿足條件的點F坐標;如果不存在,請說明理由.
【答案】(1)A(1,0),B(3,0),;(2)面積的最大值為;(3)存在,,.
【解析】
(1)令拋物線y=x2-2x-3=0,求出x的值,即可求A,B兩點的坐標,根據(jù)兩點式求出直線AC的函數(shù)表達式;
(2)設(shè)P點的橫坐標為x(-1≤x≤2),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;
(3)結(jié)合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖2,此時可以求出F點的兩個坐標.
(1)令y=0,解得x1=-1或x2=3,
∴A(-1,0),B(3,0);
將C點的橫坐標x=2代入y=x2-2x-3得y=-3,
∴C(2,-3),
設(shè)直線AC的解析式為:y=kx+b,
把A(-1,0),C(2,-3)代入直線解析式得,
解得,
∴直線AC的函數(shù)解析式是y=-x-1,
(2)設(shè)P點的橫坐標為x(-1≤x≤2),
則P、E的坐標分別為:P(x,-x-1),E(x,x2-2x-3),
∵P點在E點的上方,PE=(-x-1)-(x2-2x-3)=-x2+x+2=-(x-)2+,
∴當x=時,PE的最大值=,
△ACE的面積最大值=PE[2-(-1)]= PE=,
(3)存在,如圖1,若AF∥CH,此時的D和H點重合,CD=2,則AF=2,
于是可得F1(1,0),F2(-3,0),
如圖2,根據(jù)點A和F的坐標中點和點C和點H的坐標中點相同,
再根據(jù)
求出
綜上所述滿足條件的點F的坐標為,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點E在矩形ABCD的邊AD上,AD=6,tan∠ACD=,連接CE,線段CE繞點C旋轉(zhuǎn)90°,得到線段CF,以線段EF為直徑做⊙O.
(1)請說明點C一定在⊙O上的理由;
(2)點M在⊙O上,如圖2,MC為⊙O的直徑,求證:點M到AD的距離等于線段DE的長;
(3)當△AEM面積取得最大值時,求⊙O半徑的長;
(4)當⊙O與矩形ABCD的邊相切時,計算扇形OCF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC的中點,連接DE,P是DE上一點,∠BPC=90°,延長CP交AD于點F.⊙O經(jīng)過P、D、F,交CD于點G.
(1)求證:DFDP;
(2)若,,求DG的長;
(3)連接BF,若BF是⊙O的切線,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,M為AD的中點,連接BM,交AC于E,在CB上取一點F,使得CF=AE,連接AF,交BM于G,連接CG.
(1)求∠BGF的度數(shù);
(2)求的值;
(3)求證:BG⊥CG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2012年4月5日下午,重慶一中初2013級“智力快車”比賽的決賽在渝北校區(qū)正式進行.“智力快車”活動是我校綜合實踐課程的傳統(tǒng)版塊,已有多年歷史,比賽試題的內(nèi)容涉及到文史藝哲科技等多個方面.隨著時代的變化,其活動項目也在不斷更新.今年的比賽除了繼承傳統(tǒng)的“快速判斷”、“猜猜看”、“英語平臺”、“風險提速”四個環(huán)節(jié)外,特新增了“動手動腦”一項.比賽結(jié)束后,一綜合實踐小組成員就新增環(huán)節(jié)的滿意程度,對現(xiàn)場的觀眾進行了抽樣調(diào)查,給予評分,其中:非常滿意——5分,滿意——4分,一般——3分,有待改進——2分,并將調(diào)查結(jié)果制作成了如下的兩幅不完整的統(tǒng)計圖:
(1)本次共調(diào)查了 名同學,本次調(diào)查同學評分的平均得分為 分;
(2)將條形統(tǒng)計圖補充完整;
(3)如果評價為“一般”的只有一名是男生,評價為“有待改進”的只有一名是女生,
針對“動手動腦”環(huán)節(jié)的情況,綜合實踐小組的成員分別從評價為“一般”和評價
為“有待改進”的兩組中,分別隨機選出一名同學談?wù)勔庖姾徒ㄗh,請你用列表或畫樹狀圖的方法求出所選兩名同學剛好都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)學課上,老師提出如下問題:
已知:∠α,直線l和l上兩點A,B.
求作:Rt△ABC,使點C在直線l的上方,且∠ABC=90°,∠BAC=∠α.
小剛的做法如下:
①以∠α的頂點O為圓心,任意長為半徑作弧,交兩邊于M,N;以A為圓心,同樣長為半徑作弧,交直線l于點P;
②以P為圓心,MN的長為半徑作弧,兩弧交于點Q,作射線AQ;
③以B為圓心,任意長為半徑作弧,交直線l于E,F;
④分別以E,F為圓心,大于長為半徑作弧,兩弧在直線l上方交于點G,作射線BG;
⑤射線AQ與射線BG交于點C.Rt△ABC即為所求.
(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)
(2)完成下面的證明:
連接PQ
在△OMN和△AQP中,
∵ON=AP,PQ=NM,OM=AQ
∴△OMN ≌△AQP(__________)(填寫推理依據(jù))
∴∠PAQ=∠O=α
∵CE=CF,BE=BF
∴CB⊥EF(____________________________)(填寫推理依據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=30°,AB=AC,將線段AC繞點A逆時針旋轉(zhuǎn)α°(0<α<180),得到線段AD,連接BD,交AC于點P.
(1)當α=90時,
①依題意補全圖形;
②求證:PD=2PB;
(2)寫出一個α的值,使得PD=PB成立,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為直徑,作的內(nèi)接正六邊形,甲、乙兩人的作法分別如下:
甲:1.作的中垂線,交圓于兩點;2.作的中垂線,交圓于兩點;3.順次連接六個點,六邊形即為所求;
乙:1.以為圓心,長為半徑作弧,交圓于兩點;2.以為圓心,長為半徑作弧,交圓于兩點;3.順次連接六個點,六邊形即為所求;
對于甲、乙兩人的作法,可判斷( )
A.甲對,乙不對B.甲不對,乙對
C.兩人都不對D.兩人都對
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com