【題目】如圖,AB為⊙O的直徑,點(diǎn)P在AB的延長(zhǎng)線上,點(diǎn)C在⊙O上,且PC2=PBPA.
(1)求證:PC是⊙O的切線;
(2)已知PC=20,PB=10,點(diǎn)D是的中點(diǎn),DE⊥AC,垂足為E,DE交AB于點(diǎn)F,求EF的長(zhǎng).
【答案】(1)詳見解析;(2).
【解析】
(1)連接OC,證明△PBC∽△PCA,得到∠PCB=∠PAC,根據(jù)直徑得到∠ACB=90°,再利用OC=OB推導(dǎo)出∠PCB+∠OCB=90°即可得到結(jié)論;
(2)連接OD,根據(jù)PC2=PBPA求出AB=30,設(shè)BC=x在Rt△ABC中根據(jù)勾股定理求出x,證明△DOF∽△ACB求出,根據(jù)EF∥BC得到,由此求出EF.
(1)證明:連接OC,如圖1所示:
∵PC2=PBPA,即,且∠P=∠P,
∴△PBC∽△PCA,
∴∠PCB=∠PAC,
∵AB為⊙O的直徑,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∵OC=OB,
∴∠OBC=∠OCB,
∴∠PCB+∠OCB=90°,即OC⊥PC,
∴PC是⊙O的切線;
(2)解:連接OD,如圖2所示:
∵PC=20,PB=10,PC2=PBPA,
,
∴AB=PA﹣PB=30,
∵△PBC∽△PCA,
∴,
設(shè)BC=x,則AC=2x,在Rt△ABC中,x2+(2x)2=302,
解得:,即BC=,
∵點(diǎn)D是的中點(diǎn),AB為⊙O的直徑,
∴∠AOD=90°,
∵DE⊥AC,
∴∠AEF=90°,
∵∠ACB=90°,
∴DE∥BC,
∴∠DFO=∠ABC,
∴△DOF∽△ACB,
∴,
,即,
∵EF∥BC,
∴,
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC是⊙O的一條弦,D為弧BC的中點(diǎn),作DE⊥AC,垂足為AC的延長(zhǎng)線上的點(diǎn)E,連接DA,DB.
(1)求證:DE為⊙O的切線;
(2)試探究線段AB,BD,CE之間的數(shù)量關(guān)系,并說明理由;
(3)延長(zhǎng)ED交AB的延長(zhǎng)線于F,若AD=DF,DE=,求⊙O的半徑;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(新知探究)新定義:平面內(nèi)兩定點(diǎn) A, B ,所有滿足 k ( k 為定值)的 P 點(diǎn)形成的圖形是圓,我們把這種圓稱之為“阿氏圓”,
(問題解決)如圖,在ABC 中,CB 4 , AB 2AC ,則ABC 面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市九年級(jí)學(xué)生身體素質(zhì)情況,從全市九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測(cè)試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測(cè)試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 °,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)全市九年級(jí)有學(xué)生6200名,如果全部參加這次體育科目測(cè)試,請(qǐng)估計(jì)不及格的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一列數(shù)a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且滿足任意相鄰三個(gè)數(shù)的和為常數(shù),則a1+a2+a3+…+a98+a99+a100的值為( )
A.1985B.-1985C.2019D.-2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校1000名學(xué)生一周在校參加體育鍛煉的時(shí)間,現(xiàn)從各年級(jí)隨機(jī)抽取了部分學(xué)生,對(duì)他們一周在校參加體育鍛煉的時(shí)間進(jìn)行了調(diào)查,并繪制出如下的統(tǒng)計(jì)圖①和圖②,根據(jù)相關(guān)信息,解答下列問題:
(Ⅰ)本次接受隨機(jī)抽樣調(diào)查的學(xué)生人數(shù)為 ,圖①中的值為 ;
(Ⅱ)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅲ)根據(jù)樣本數(shù)據(jù),估計(jì)該校一周在校參加體育鍛煉的時(shí)間大于的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級(jí)同學(xué)最喜歡看哪一類課外書?某校隨機(jī)抽取七年級(jí)部分同學(xué)對(duì)此進(jìn)行問卷調(diào)査(每人只選擇一種最喜歡的書籍類型).如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)統(tǒng)計(jì)圖信息,解答下列問題:
(1)一共有多少名學(xué)生參與了本次問卷調(diào)查;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出扇形統(tǒng)計(jì)圖中“其他”所在扇形的圓心角度數(shù);
(3)若該年級(jí)有400名學(xué)生,請(qǐng)你估計(jì)該年級(jí)喜歡“科普常識(shí)”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在軸上,以為直徑作,點(diǎn)在軸上,且在點(diǎn)上方,過點(diǎn)作的切線,為切點(diǎn),如果點(diǎn)在第一象限,則稱為點(diǎn)的離點(diǎn).例如,圖1中的為點(diǎn)的一個(gè)離點(diǎn).
(1)已知點(diǎn),為的離點(diǎn).
①如圖2,若,則圓心的坐標(biāo)為__________,線段的長(zhǎng)為__________;
②若,求線段的長(zhǎng);
(2)已知,直線.
①當(dāng)時(shí),若直線上存在的離點(diǎn),則點(diǎn)縱坐標(biāo)的最大值為__________;
②記直線在的部分為圖形,如果圖形上存在的離點(diǎn),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,過點(diǎn)作軸,垂足為點(diǎn),易知,得到點(diǎn)的坐標(biāo)為.
(探究)如圖2,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段.
(1)求點(diǎn)的坐標(biāo).(用含的代數(shù)式表示)
(2)求出BC所在直線的函數(shù)表達(dá)式.
(拓展)如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)在軸上,將線段繞著點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)至線段,連結(jié)、,則的最小值為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com