【題目】如圖,四邊形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E為AB的中點,
(1)求證:AC2=ABAD;
(2)求證:△AFD∽△CFE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)兩組對角對應(yīng)相等的兩個三角形相似證明即可;
(2)根據(jù)直角三角形的性質(zhì)得到CE=BE=AE,根據(jù)等腰三角形的性質(zhì)得到∠EAC=∠ECA,推出AD∥CE即可解決問題;
(1)證明:∵AC平分∠DAB,
∴∠DAC=∠CAB,
∵∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴AD:AC=AC:AB,
∴AC2=ABAD;
(2)證明:∵E為AB的中點,
∴CE=BE=AE,
∴∠EAC=∠ECA,
∵∠DAC=∠CAB,
∴∠DAC=∠ECA,
∴CE∥AD,
∴△AFD∽△CFE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,動點P從點B開始沿邊BA、AC向點C以3cm/s的速度移動,動點Q從點B開始沿邊BC向點C以cm/s的速度移動,動點P、Q同時出發(fā),到點C運動結(jié)束.設(shè)運動過程中△BPQ的面積為y(cm2),運動時間為t(s).
(1)點P運動到點A,t= (s);
(2)請你用含t的式子表示y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個云梯的底端B離墻多遠?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線F:y=x2+bx+c的圖象經(jīng)過坐標(biāo)原點O,且與x軸另一交點為(﹣,0).
(1)求拋物線F的解析式;
(2)如圖1,直線l:y=x+m(m>0)與拋物線F相交于點A(x1,y1)和點B(x2,y2)(點A在第二象限),求y2﹣y1的值(用含m的式子表示);
(3)在(2)中,若m=,設(shè)點A′是點A關(guān)于原點O的對稱點,如圖2.
①判斷△AA′B的形狀,并說明理由;
②平面內(nèi)是否存在點P,使得以點A、B、A′、P為頂點的四邊形是菱形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中AC=BC,∠ACB=90°,以BC為直徑作⊙O,連接OA,交⊙O于點D,過D點作⊙O的切線交AC于點E,連接B、D并延長交AC于點F.則下列結(jié)論錯誤的是( 。
A. △ADE∽△ACO B. △AOC∽△BFC
C. △DEF∽△DOC D. CD2=DFDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將等腰△ABC沿對稱軸折疊后,得到△ADC(△ADB),若,則稱等腰△ABC為“長月三角形”ABC.
(1)結(jié)合題目情境,請你判斷“長月三角形”一定會是______三角形.
(2)如圖2,C為線段AB上一點,分別以AC和BC為邊作“長月三角形”ACD和“長月三角形”BCE,連接AE、BD交于點O,AE與CD交于點P,CE與BD交于點M.
①求證:;
②求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1.在△ABC中,∠B=60°,∠DAC和∠ACE的角平分線交于點O,則∠O= °,
(2)如圖2,若∠B=α,其他條件與(1)相同,請用含α的代數(shù)式表示∠O的大;
(3)如圖3,若∠B=α,,則∠P= (用含α的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點的坐標(biāo)為,點為軸上一動點,以為邊在的右側(cè)作等腰,,連接,則的最小值是 __________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,為等邊三角形,為上的一個動點,為延長線上一點,且.
(1)當(dāng)是的中點時,求證:.
(2)如圖1,若點在邊上,猜想線段與之間的關(guān)系,并說明理由.
(3)如圖2,若點在的延長線上,(1)中的結(jié)論是否仍然成立,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com