【題目】根據(jù)對(duì)寧波市相關(guān)的市場(chǎng)物價(jià)調(diào)研,某批發(fā)市場(chǎng)內(nèi)甲種水果的銷售利潤y1(千元)與進(jìn)貨量x(噸)近似滿足函數(shù)關(guān)系y1=0.25x,乙種水果的銷售利潤y2(千元)與進(jìn)貨量x(噸)之間的函數(shù)y2=ax2+bx+c的圖象如圖所示.

(1)求出y2x之間的函數(shù)關(guān)系式;

(2)如果該市場(chǎng)準(zhǔn)備進(jìn)甲、乙兩種水果共8噸,設(shè)乙水果的進(jìn)貨量為t噸,寫出這兩種水果所獲得的銷售利潤之和W(千元)與t(噸)之間的函數(shù)關(guān)系式,并求出這兩種水果各進(jìn)多少噸時(shí)獲得的銷售利潤之和最大,最大利潤是多少?

【答案】(1)y2=﹣x2+x;(2)w=﹣(t﹣4)2+6,t=4時(shí),w的值最大,最大值為6,

∴兩種水果各進(jìn)4噸時(shí)獲得的銷售利潤之和最大,最大利潤是6千元.

【解析】

1)利用待定系數(shù)法即可解決問題;

2)銷售利潤之和W=甲種水果的利潤+乙種水果的利潤,利用配方法求得二次函數(shù)的最值即可

1∵函數(shù)y2=ax2+bx+c的圖象經(jīng)過(0,0),(1,2),(4,5),解得,y2=﹣x2+x

2w = y1+y2=8t)﹣t2+t=﹣t42+6t=4時(shí)w的值最大,最大值為6,∴兩種水果各進(jìn)4噸時(shí)獲得的銷售利潤之和最大,最大利潤是6千元

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BCBC的延長線于點(diǎn)PQ

1)求∠PAQ的大小;

2)若點(diǎn)MPQ的中點(diǎn),求證:PM2CM·BM

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x26x+21.求:

1)直接寫出拋物線y=x26x+21的頂點(diǎn)坐標(biāo);

2)當(dāng)x2時(shí),求y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,A、B、C三地依次在一直線上,兩輛汽車甲、乙分別從A、B兩地同時(shí)出發(fā)駛向C地,如圖②,是兩輛汽車行駛過程中到C地的距離skm)與行駛時(shí)間th)的關(guān)系圖象,其中折線段EFFG是甲車的圖象,線段OM是乙車的圖象.

1)圖②中,a的值為   ;點(diǎn)M的坐標(biāo)為   ;

2)當(dāng)甲車在乙車與B地的中點(diǎn)位置時(shí),求行駛的時(shí)間t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線l:y=x+mx軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CDx軸平行,且SACD:SABD=3:5.

(1)求點(diǎn)A的坐標(biāo);

(2)求此二次函數(shù)的解析式;

(3)點(diǎn)P為直線l上一動(dòng)點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對(duì)應(yīng)點(diǎn),點(diǎn)C,C'是對(duì)應(yīng)點(diǎn)).請(qǐng)問:是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請(qǐng)直接寫出點(diǎn)A'的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中.,,則

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過點(diǎn)O作直線EFBC分別交ACB、外角ACD的平分線于點(diǎn)E、F.

(1)若CE=8,CF=6,求OC的長;

(2)連接AE、AF.問:當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線軸相交于點(diǎn),與軸相交于點(diǎn).

1)求直線與坐標(biāo)軸圍成的面積;

2)在軸上一動(dòng)點(diǎn),使是等腰三角形;請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),并求出如圖所示時(shí)點(diǎn)的坐標(biāo);

3)直線與直線相交于點(diǎn),與軸相交于點(diǎn);點(diǎn)是直線上一點(diǎn),若的面積是的面積的兩倍,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖、直角梯形中、、、、連接,垂直

求證:

求證:;

,則________.

查看答案和解析>>

同步練習(xí)冊(cè)答案