【題目】如圖,P是等邊三角形ABC內一點,且PA=4,PB=,PC=2,以下五個結論:①∠ BPC=120°;②∠APC=120°;③;④AB=;⑤點PABC三邊的距離分別為PE,PF,PG,則有 其中正確的有(

A.4B.3C.2D.1

【答案】B

【解析】

BHPCH,根據(jù)等邊三角形的性質得:BA=BC,∠ABC=60°,把△ABP繞點B順時針旋轉60°得到△CBD,證明出△PBD為等邊三角形和△PCD為直角三角形即可求出①;根據(jù)平角性質,可得∠BPH=30°,證明△ABP為直角三角形,即可求出②和④;根據(jù)面積公式求出③;根據(jù)等面積法即可求出④.

BHPCH

根據(jù)等邊三角形的性質得:BA=BC,∠ABC=60°

把△ABP繞點B順時針旋轉60°得到△CBD,連接PD得到上圖

根據(jù)旋轉的性質可得CD=AP=4BD=BP=,∠PBD=60°

∴△PBD為等邊三角形

PD=PB=,∠BPD=60°

在三角形PDC中,PC=2,PD= CD=4

PC2+PD2=CD2

∴△PCD為直角三角形,∠CPD=90°

∴∠BPC=BPD+CPB=150°,故①錯誤;

根據(jù)平角性質,可得∠BPH=30°

在直角三角形PBH中,∵∠BPH=30°

PB=

BH=,則PH=3

CH=PC+PH=2+3=5

在直角三角形BCH

,則,故④正確;

又∵

∴△ABP為直角三角形,∠APB=90°

∴∠APC=360°-APB-BPC=120°,故選項②正確;

,故選項③錯誤;

,故選項⑤正確

故答案選擇:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O是等邊△ABC內一點,∠BOC,∠AOC100°,將△BOC繞點B按逆時針方向旋轉60°得到△BDA,連接OD.

(1) 求證:△BOD是等邊三角形.

(2) 150°時,試判斷△AOD的形狀,并說明理由.

(3) 若△AOD是等腰三角形,請你直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一次函數(shù)y1kx+by2x+a的圖象如圖所示,則下列結論:k0;a0;x3時,y1y2;y10y20時,﹣ax4.其中正確的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:學習了分式運算后,老師布置了這樣一道計算題:,甲、乙兩位同學的解答過程分別如下:

甲同學:

乙同學:

老師發(fā)現(xiàn)這兩位同學的解答過程都有錯誤.

請你從甲、乙兩位同學中,選擇一位同學的解答過程,幫助他分析錯因,并加以改正.

1)我選擇________同學的解答過程進行分析. (填

2)該同學的解答從第________步開始出現(xiàn)錯誤(填序號),錯誤的原因是________;

3)請寫出正確解答過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的正方形網格中,每個小正方形的邊長為1各單位,格點三角形(頂點是網格線的交點的三角形)△ABC的頂點A,B的坐標分別為(1,4),(﹣3,1).

(1)請在網格所在的平面內作出符合上述表述的平面直角坐標系;

(2)請你將A、B、C的橫坐標不變,縱坐標乘以﹣1所得到的點A1、B1、C1描在坐標系中,并畫出△A1B1C1,其中點C1的坐標為   

(3)△ABC的面積是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料:已知方程x2+x﹣3=0,求一個一元二次方程,使它的根分別是已知方程根的2倍.

解:設所求方程的根為y,則y=2x.所以x=

x=代入已知方程,得(2+﹣3=0,化簡,得y2+2y﹣12=0.

故所求方程為y2+2y﹣12=0.

這種利用方程根的代換求新方程的方法,我們稱為“換根法”.

問題:已知方程x2+x﹣1=0,求一個一元二次方程,使它的根分別是已知方程根的3倍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若要建一個長方形雞場,雞場的一邊靠墻,墻對面有一個2米寬的門,另三邊用竹籬笆圍成,籬笆總長33米,圍成長方形的雞場除門之外四周不能有空隙.求:

(1)若墻長為18米,要圍成雞場的面積為150平方米,則雞場的長和寬各為多少米?

(2)圍成雞場的面積可能達到200平方米嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Rt△AOB的兩條直角邊OA、OB分別在x軸和y軸上,OA=3,OB=4.把△AOB繞點A順時針旋轉120°,得到△ADC.邊OB上的一點M旋轉后的對應點為M′,當AM′+DM取得最小值時,點M的坐標為( 。

A. (0, B. (0, C. (0, D. (0,3)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A、B、C三點在同一直線上,分別以AB、BC為邊,在直線AC的同側作等邊ABD和等邊BCE,連接AEBD于點M,連接CDBE于點N,連接MNBMN

1)求證:AECD;

2)試判斷BMN的形狀,并說明理由;

3)設CD、AE相交于點G,求∠AGC的度數(shù).

查看答案和解析>>

同步練習冊答案