【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點O,延長BA到點D,使AD=AO,連接DO,若BD=BC,∠ABC=54°,則∠BCA的度數(shù)為°.
【答案】42
【解析】解:∵△ABC三個內(nèi)角的平分線交于點O, ∴∠ABO=∠CBO,∠BAO=∠CAO,∠BCO=∠ACO,
∵AD=A0,
∴∠D=∠AOD,
∴∠BAO=2∠D,
設(shè)∠D=α,
則∠BAO=2α,∠BAC=4α,
在△DBO與△CBO中,
∴△DBO≌△CBO,
∴∠BCO=∠D=α,
∴∠BCA=2α,
∴54+4α+2α=180,
∴α=21,
∴∠BCA=42°,
故答案為:42.
由△ABC三個內(nèi)角的平分線得到角相等,關(guān)鍵等腰三角形的性質(zhì)得到∠D=∠AOD,由外角的性質(zhì)得到∠BAC=4∠D,由△DBO≌△CBO,得到∠BOC=∠D=α,
∠BCA=2α,根據(jù)三角形的內(nèi)角和列方程求得.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在長方形ABCD中,AB=12cm,BC=8cm,點P從A點出發(fā),沿A→B→C→D路線運動,到D點停止;點Q從D點出發(fā),沿D→C→B→A運動,到A點停止.若點P、點Q同時出發(fā),點P的速度為每秒1cm,點Q的速度為每秒2cm,用x(秒)表示運動時間.
(1)求點P和點Q相遇時的x值.
(2)連接PQ,當PQ平分矩形ABCD的面積時,求運動時間x值.
(3)若點P、點Q運動到6秒時同時改變速度,點P的速度變?yōu)槊棵?/span>3cm,點Q的速度為每秒1cm,求在整個運動過程中,點P、點Q在運動路線上相距路程為20cm時運動時間x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠CAB=70°,將△ABC繞點A逆時針旋轉(zhuǎn)到△AB′C′的位置,使得CC′∥AB,則∠BAB′的度數(shù)是( )
A.70°
B.35°
C.40°
D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖A在數(shù)軸上所對應(yīng)的數(shù)為﹣2.
(1)點B在點A右邊距A點4個單位長度,求點B所對應(yīng)的數(shù);
(2)在(1)的條件下,點A以每秒2個單位長度沿數(shù)軸向左運動,點 B 以每秒2個單位長度沿數(shù)軸向右運動,當點A運動到﹣6所在的點處時,求A,B兩點間距離.
(3)在(2)的條件下,現(xiàn)A點靜止不動,B點再以每秒2個單位長度沿數(shù)軸向左運動時,經(jīng)過多長時間A,B兩點相距4個單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有三個有理數(shù)a,b,c,已知a=,(n為正整數(shù))且a與b互為相反數(shù),b與c互為倒數(shù).
(1)當n為奇數(shù)時你能求出a,b,c各是幾嗎?
(2)當n為偶數(shù)時,你能求a,b,c三數(shù)嗎?若能請算出結(jié)果,不能請說明理由.
(3)根據(jù)(1)中的結(jié)論,求:ab﹣b﹣(b﹣c)2015的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位在五月份準備組織部分員工到北京旅游,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報價均為3000元/人,兩家旅行社同時都對10人以上的團體推出了優(yōu)惠舉措;甲旅行社對每位員工七五折優(yōu)惠,而乙旅行社是免去一位帶隊管理員工的費用,其余員工八折優(yōu)惠.
(1)如果設(shè)參加旅游的員工共有a(a>10人),則甲旅行社的費用為 元,乙旅行社的費用為 元;(用含a的代數(shù)式表示,并化簡)
(2)如果計劃在五月份外出旅游七天,設(shè)最中間一天的日期為x,則這七天的日期之和為 .(用含x的代數(shù)式表示,并化簡)
(3)在(2)的條件下,假如這七天的日期之和為49的倍數(shù),則他們可能于五月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計算過程)
(4)假如這個單位現(xiàn)組織包括管理員工在內(nèi)的共20名員工到北京旅游,該單位選擇哪一家旅行社比較優(yōu)惠?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE、△BCF, 則下列結(jié)論:
①△EBF≌△DFC;
②四邊形AEFD為平行四邊形;
③當AB=AC,∠BAC=1200時,四邊形AEFD是正方形.
其中正確的結(jié)論是 .(請寫出正確結(jié)論的番號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,過點A作射線AM與線段BD交于點M,∠BAM=α(0°<α<90°),作CE⊥AM于點E,點N與點M關(guān)于直線CE對稱,連接CN.
(1)如圖①,當0°<α<45°時,
①依題意在圖①中補全圖并證明:AM=CN ②當BD∥CN,求DM的值
(2)探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com