【題目】如圖在長方形ABCD中,AB=12cm,BC=8cm,點(diǎn)P從A點(diǎn)出發(fā),沿A→B→C→D路線運(yùn)動,到D點(diǎn)停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A運(yùn)動,到A點(diǎn)停止.若點(diǎn)P、點(diǎn)Q同時(shí)出發(fā),點(diǎn)P的速度為每秒1cm,點(diǎn)Q的速度為每秒2cm,用x(秒)表示運(yùn)動時(shí)間.
(1)求點(diǎn)P和點(diǎn)Q相遇時(shí)的x值.
(2)連接PQ,當(dāng)PQ平分矩形ABCD的面積時(shí),求運(yùn)動時(shí)間x值.
(3)若點(diǎn)P、點(diǎn)Q運(yùn)動到6秒時(shí)同時(shí)改變速度,點(diǎn)P的速度變?yōu)槊棵?/span>3cm,點(diǎn)Q的速度為每秒1cm,求在整個運(yùn)動過程中,點(diǎn)P、點(diǎn)Q在運(yùn)動路線上相距路程為20cm時(shí)運(yùn)動時(shí)間x值.
【答案】(1)x= ;(2)4 或20;(3)4或14.5
【解析】
試題(1)根據(jù)P、Q兩點(diǎn)運(yùn)動的路程和等于AB+BC+CD列方程求解即可;
(2)分點(diǎn)P在AB邊上,點(diǎn)Q在CD邊上和點(diǎn)Q運(yùn)動到A點(diǎn),點(diǎn)P運(yùn)動到點(diǎn)C兩種情況進(jìn)行討論即可得;
(3)分變速前與變速后兩種情況進(jìn)行即可得.
試題解析:(1)由題意得:x+2x=12×2+8,解得: x= ;
(2)當(dāng)點(diǎn)P在AB邊上,點(diǎn)Q在CD邊上,由題意得:2x=12-x 解得,x=4 ;
當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)A時(shí),用時(shí)(12+8+12)÷2=16秒,此時(shí)點(diǎn)P運(yùn)動到BC邊上,當(dāng)點(diǎn)P運(yùn)動到點(diǎn)C時(shí),PQ平分矩形ABCD的面積,此時(shí)用時(shí):(12+8)÷1=20 秒,
綜上:當(dāng)PQ平分矩形ABCD在面積時(shí),x的值為4或20;
(3)變速前:x+2x=32-20,解得:x=4 ;
變速后:12+(x-6)+6+3×(x-6)=32+20,解得:x=14.5;
綜上:x的值為4或14.5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點(diǎn),以O(shè)為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點(diǎn)C,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標(biāo)系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點(diǎn)C到墻面OB的水平距離為3m時(shí),到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計(jì)算出拱頂D到地面OA的距離;
(2)一輛貨運(yùn)汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明在山腳下的A處測得山頂N的仰角為45°,此時(shí),他剛好與山底D在同一水平線上.然后沿著坡度為30°的斜坡正對著山頂前行110米到達(dá)B處,測得山頂N的仰角為60°.求山的高度.(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.414, ≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(1)班所有學(xué)生參加2010年初中畢業(yè)生升學(xué)體育測試,根據(jù)測試評分標(biāo)準(zhǔn),將他們的成績進(jìn)行統(tǒng)計(jì)后分為A、B、C、D四等,并繪制成如圖所示的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(未完成),請結(jié)合圖中所給信息解答下列問題:
(1)九年級(1)班參加體育測試的學(xué)生有人;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在扇形統(tǒng)計(jì)圖中,等級B部分所占的百分比是 , 等級C對應(yīng)的圓心角的度數(shù)為;
(4)若該校九年級學(xué)生共有850人參加體育測試,估計(jì)達(dá)到A級和B級的學(xué)生共有人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,3),C(3,0).(1)畫出△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到的△DEF;
(2)以點(diǎn)O為位似中心,在第三象限內(nèi)把△ABC按相似比2:1放大(即所畫△PQR與△ABC的相似比為2:1).
(3)在(2)的條件下,若M(a,b)為△ABC邊上的任意一點(diǎn),則△PQR的邊上與點(diǎn)M對應(yīng)的點(diǎn)M′的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(2m﹣1)x+m2=0有兩個實(shí)數(shù)根x1和x2 .
(1)求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x12﹣x22=0時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC三個內(nèi)角的平分線交于點(diǎn)O,延長BA到點(diǎn)D,使AD=AO,連接DO,若BD=BC,∠ABC=54°,則∠BCA的度數(shù)為°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com