【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當x取任意一個值時,x對應的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當x>2時,M=y2;②當x<0時,Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結論正確的是_____(填寫所有正確結論的序號).

【答案】②③

【解析】①觀察函數(shù)圖象,可知:當x>2時,拋物線y1=-x2+4x在直線y2=2x的下方,進而可得出當x>2時,M=y1,結論①錯誤;

②觀察函數(shù)圖象,可知:當x<0時,拋物線y1=-x2+4x在直線y2=2x的下方,進而可得出當x<0時,M=y1,再利用二次函數(shù)的性質可得出Mx的增大而增大,結論②正確;

③利用配方法可找出拋物線y1=-x2+4x的最大值,由此可得出:使得M大于4x的值不存在,結論③正確;

④利用一次函數(shù)圖象上點的坐標特征及二次函數(shù)圖象上點的坐標特征求出當M=2時的x值,由此可得出:若M=2,則x=12+,結論④錯誤.

此題得解.

①當x>2時,拋物線y1=-x2+4x在直線y2=2x的下方,

∴當x>2時,M=y1,結論①錯誤;

②當x<0時,拋物線y1=-x2+4x在直線y2=2x的下方,

∴當x<0時,M=y1,

Mx的增大而增大,結論②正確;

③∵y1=-x2+4x=-(x-2)2+4,

M的最大值為4,

∴使得M大于4x的值不存在,結論③正確;

④當M=y1=2時,有-x2+4x=2,

解得:x1=2-(舍去),x2=2+;

M=y2=2時,有2x=2,

解得:x=1.

∴若M=2,則x=12+,結論④錯誤.

綜上所述:正確的結論有②③

故答案為:②③

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是我縣新區(qū)部分小區(qū)位置簡圖.設港澳城為點A,水榭花都為點B,朝陽家園為點C,濱海華庭為點D,陽光家園為點E,盛世嘉苑為點F,設每個小格的單位為1

1)請建立適當?shù)钠矫嬷苯亲鴺讼,并寫出六個小區(qū)的坐標;

2)依次連接點AC、E、B,請求出四邊形ACEB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,DBC的中點,過D點的直線GFACF,交AC的平行線BGG點,DEDF,交AB于點E,連結EGEF

1)求證:BGCF;

2)請你判斷BE+CFEF的大小關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是由一些火柴棒搭成的圖案:

(1)擺第①個圖案用 根火柴棒,擺第②個圖案用 根火柴棒,擺第③個圖案用 根火柴棒.

(2)按照這種方式擺下去,擺第n個圖案用多少根火柴棒?

(3)計算一下擺121根火柴棒時,是第幾個圖案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在正方形ABCD中,點PAC上,PEABE,PFBCF.

1)試判斷線段EFPD的長是否相等,并說明理由.

2)若點OAC的中點,判斷OFOE之間有怎樣的位置和數(shù)量關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC是等邊三角形,D為邊AC的中點,AEEC,BDEC

1)求證:BDA≌△CEA;

2)請判斷ADE是什么三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式4x2+1加上一個單項式,使它成為一個整式的完全平方,則這個單項式可以是__________________.(填寫符合條件的一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,點C在優(yōu)弧上,將弧沿BC折疊后剛好經(jīng)過AB的中點D.若⊙O的半徑為,AB=4,則BC的長是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,對四邊形ABCD是平行四邊形的下列判斷,正確的打,錯誤的打“×”

1)因為ADBC,AB=CD,所以ABCD是平行四邊形.____

2)因為ABCD,AD=BC,所以ABCD是平行四邊形.____

3)因為ADBC,AD=BC,所以ABCD是平行四邊形.____

4)因為ABCDADBC,所以ABCD是平行四邊形.____

5)因為AB=CD,AD=BC,所以ABCD是平行四邊形.____

6)因為AD=CD,AB=AC,所以ABCD是平行四邊形.____

查看答案和解析>>

同步練習冊答案