【題目】如圖是我縣新區(qū)部分小區(qū)位置簡(jiǎn)圖.設(shè)港澳城為點(diǎn)A,水榭花都為點(diǎn)B,朝陽(yáng)家園為點(diǎn)C,濱海華庭為點(diǎn)D,陽(yáng)光家園為點(diǎn)E,盛世嘉苑為點(diǎn)F,設(shè)每個(gè)小格的單位為1

1)請(qǐng)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,并寫(xiě)出六個(gè)小區(qū)的坐標(biāo);

2)依次連接點(diǎn)A、C、EB,請(qǐng)求出四邊形ACEB的面積.

【答案】1)見(jiàn)解析,A(12),B(3,0)C(2,0),D(0,﹣1),E(0,﹣2),F(2,﹣2);(2)見(jiàn)解析,10

【解析】

1)以BC所在直線為x軸,以DE所在直線為y軸,建立直角坐標(biāo)系即可;

2)根據(jù)S四邊形ACEBSABC+SBCE求得即可.

解:(1)建立平面直角坐標(biāo)系如圖所示:

A(﹣1,2),B(﹣3,0),C2,0),D0,﹣1),E0,﹣2),F(﹣2,﹣2);

2S四邊形ACEBSABC+SBCE×5×2+10

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知⊙OΔADB的外接圓,∠ADB的平分線DCAB于點(diǎn)M,交⊙O于點(diǎn)C,連接AC,BC.

(1)求證:AC=BC;

(2)如圖2,在圖1 的基礎(chǔ)上做⊙O的直徑CFAB于點(diǎn)E,連接AF,過(guò)點(diǎn)A作⊙O的切線AH,若AH//BC,求∠ACF的度數(shù);

(3)在(2)的條件下,若ΔABD的面積為,ΔABDΔABC的面積比為2:9,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖像過(guò)點(diǎn),,與軸交于另一點(diǎn),且對(duì)稱(chēng)軸是直線.

(1)求該二次函數(shù)的解析式;

(2)若上的一點(diǎn),作,當(dāng)面積最大時(shí),求的坐標(biāo);

(3)軸上的點(diǎn),過(guò)軸,與拋物線交于,過(guò)軸于.當(dāng)以、為頂點(diǎn)的三角形與、、為頂點(diǎn)的三角形相似時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形OABC的一邊OAx軸的負(fù)半軸上,O是坐標(biāo)原點(diǎn),A點(diǎn)坐標(biāo)為(-10,0),對(duì)角線ACOB相交于點(diǎn)DAC·OB=160.若反比例函數(shù)y=(x<0)的圖象經(jīng)過(guò)點(diǎn)D,并與BC的延長(zhǎng)線交于點(diǎn)E,SOCESOAB=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】知識(shí)改變世界,科技改變生活.導(dǎo)航裝備的不斷更新極大方便了人們的出行.如圖,某校組織學(xué)生乘車(chē)到黑龍灘(用C表示)開(kāi)展社會(huì)實(shí)踐活動(dòng),車(chē)到達(dá)A地后,發(fā)現(xiàn)C地恰好在A地的正北方向,且距離A13千米,導(dǎo)航顯示車(chē)輛應(yīng)沿北偏東60°方向行駛至B地,再沿北偏西37°方向行駛一段距離才能到達(dá)C地,求B、C兩地的距離.(參考數(shù)據(jù):sin53°≈,cos53°≈,tan53°≈)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O(0,0)B(12)

1)若點(diǎn)Ay軸上,且三角形AOB的面積為2,求點(diǎn)A的坐標(biāo);

2)若點(diǎn)C的坐標(biāo)為(3,0)BDOC,且BDOC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為( 。

A. (﹣ B. (﹣ C. (﹣ D. (﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C=90°,BE平分∠ABCAC于點(diǎn)E,作EDEBAB于點(diǎn)D,OBED的外接圓.

(1)求證:AC是⊙O的切線;

(2)已知⊙O的半徑為2.5,BE=4,求BC,AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們規(guī)定:當(dāng)x取任意一個(gè)值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1y2,若y1≠y2,取y1y2中較小值為M;若y1=y2,記M=y1=y2①當(dāng)x>2時(shí),M=y2;②當(dāng)x<0時(shí),Mx的增大而增大;③使得M大于4x的值不存在;④若M=2,則x=1.上述結(jié)論正確的是_____(填寫(xiě)所有正確結(jié)論的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案