【題目】操作:在△ABC中,AC=BC=4,∠C=90°,將一塊直角三角板的直角頂點(diǎn)放在斜邊AB的中點(diǎn)P處,將三角板繞點(diǎn)P旋轉(zhuǎn),三角板的兩直角邊分別交射線AC、CB于D、E兩點(diǎn)。如圖①、②、③是旋轉(zhuǎn)三角板得到的圖形中的3種情況。
探究:
(1)如圖①,PD⊥AC于D,PE⊥BC于E,則重疊部分四邊形DCEP的面積為___,周長(zhǎng)___.
(2)三角板繞點(diǎn)P旋轉(zhuǎn),觀察線段PD與PE之間有什么數(shù)量關(guān)系?并結(jié)合圖②加以證明;
(3)三角板繞點(diǎn)P旋轉(zhuǎn),△PBE是否能成為等腰三角形?若能,指出所有情況(即寫出△PBE為等腰三角形時(shí)CE的長(zhǎng));若不能,請(qǐng)說(shuō)明理由。
【答案】(1)4,8;(2)證明見詳解;(3)CE=0或2或或;
【解析】
(1)根據(jù)點(diǎn)P是AB的中點(diǎn)可判斷出PD、PE是△ABC的中位線,繼而可得出PD、PE的長(zhǎng)度,也可得出四邊形DCEP的周長(zhǎng)和面積.
(2)先根據(jù)圖形可猜測(cè)PD=PE,從而連接CP,通過(guò)證明△PCD≌△PEB,可得出結(jié)論.
(3)題目只要求是等腰三角形,所以需要分四種情況進(jìn)行討論,這樣每一種情況下的CE的長(zhǎng)也就不難得出.
解:(1)根據(jù)△ABC中,AC=BC=4,∠C=90°,
∵PD⊥AC,PE⊥BC,
∴PD∥BC,PE∥AC,
又∵點(diǎn)P是AB中點(diǎn),
∴PD、PE是△ABC的中位線,
∴PD=CE=2,PE=CD=2,
∴四邊形DCEP是正方形,面積為:2×2=4,周長(zhǎng)為:2+2+2+2=8;
故答案為:4,8
(2)PD=PE;
證明如下:AC=BC,∠C=90°,P為AB中點(diǎn),連接CP,
∴CP平分∠C,CP⊥AB,
∵∠PCB=∠B=45°,
∴CP=PB,
∵∠DPC+∠CPE=∠CPE+∠EPB=90°,
∴∠DPC=∠EPB,
在△PCD和△PEB中,
,
∴△PCD≌△PBE(ASA),
∴PD=PE.
(3)△PBE是等腰三角形,
∵AC=BC=4,∠ACB=90°,
∴,
∴PB=;
①PE=PB時(shí),此時(shí)點(diǎn)C與點(diǎn)E重合,CE=0;
②當(dāng)PB=BE時(shí),如圖,E在線段BC上,
CE=;
③當(dāng)PB=BE時(shí),如圖,E在CB的延長(zhǎng)線上,CE=;
④當(dāng)PE=BE時(shí),此時(shí),點(diǎn)E是BC中點(diǎn),則CE=2.
綜合上述,CE的長(zhǎng)為:0或2或或;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,點(diǎn)在上,以線段的長(zhǎng)為半徑的與相切于點(diǎn),分別交、于點(diǎn)、,連接并延長(zhǎng)交延長(zhǎng)線于點(diǎn).
(1)求證:;
(2)已知的半徑為5.
①若,則__________;
②連接,當(dāng)__________時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如1,在平面直角坐標(biāo)系中,直線分別與軸、軸交于點(diǎn),等邊的頂點(diǎn)與原點(diǎn)重合,邊落在軸正半軸上,點(diǎn)恰好落在線段上,將等邊從圖1的位置沿軸正方向以每秒1個(gè)單位長(zhǎng)度的速度平移,邊分別與線段交于點(diǎn)(如圖2所示),設(shè)平移的時(shí)間為(s).
(1) ,等邊的邊長(zhǎng)為 ;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),MN垂直平分AB;
(3)在開始平移的同時(shí),點(diǎn)從的頂點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿折線運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí)立即停止運(yùn)動(dòng),也隨之停止平移.
①當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若,求的值;
②當(dāng)點(diǎn)在線段上運(yùn)動(dòng)時(shí),若的面積,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=∠ACB,以點(diǎn)B為圓心,BC長(zhǎng)為半徑的弧分別交AC,AB于點(diǎn)D,E,連接BD,ED.
(1)寫出圖中所有的等腰三角形;
(2)若∠AED=114°,求∠ABD和∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,二次函數(shù)的圖象,如圖所示,解決下列問題:
(1)關(guān)于的一元二次方程的解為;
(2)求出拋物線的解析式;
(3)為何值時(shí).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,點(diǎn)在射線上(不與點(diǎn)、點(diǎn)重合),將線段繞逆時(shí)針旋轉(zhuǎn)得到線段,作射線與射線,兩射線交于點(diǎn).
(1)若點(diǎn)在線段上,如圖1,請(qǐng)直接寫出與的關(guān)系.
(2)若點(diǎn)在線段的延長(zhǎng)線上,如圖2,(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,連接,為的中點(diǎn),連接,若,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一次數(shù)學(xué)課外活動(dòng)中,小明同學(xué)在點(diǎn)P處測(cè)得教學(xué)樓A位于北偏東60°方向,辦公樓B位于南偏東45°方向.小明沿正東方向前進(jìn)60米到達(dá)C處,此時(shí)測(cè)得教學(xué)樓A恰好位于正北方向,辦公樓B正好位于正南方向.求教學(xué)樓A與辦公樓B之間的距離(結(jié)果精確到0.1米).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(2,6),和點(diǎn)B(4,m).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)直接寫出不等式≤ax+b的解集和△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象過(guò)點(diǎn)P(﹣,0),且與反比例函數(shù)(m≠0)的圖象相交于點(diǎn)A(﹣2,1)和點(diǎn)B.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo),并根據(jù)圖象回答:當(dāng)x在什么范圍內(nèi)取值時(shí),一次函數(shù)的函數(shù)值小于反比例函數(shù)的函數(shù)值?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com