=________,=________,=________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測(cè)叢書 八年級(jí)數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:044

函數(shù)的奇偶性

  一般地,如果函數(shù)y=f(x)對(duì)于自變量取值范圍內(nèi)的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函數(shù);如果函數(shù)y=f(x)對(duì)于自變量取值范圍內(nèi)的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函數(shù).

  例如:f(x)=x3+x.

  當(dāng)x取任意實(shí)數(shù),

  f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)

  即f(-x)=-f(x)

  所以f(x)=x3+x為奇函數(shù).

  又如:f(x)=|x|,

  當(dāng)x取任意實(shí)數(shù)時(shí),f(-x)=|-x|=|x|=f(x),

  即f(-x)=f(x)

  所以f(x)為偶函數(shù).

問題:(1)下列函數(shù):

①y=x4;②y=x2+1;③y=;④y=;⑤y=x+

所有奇函數(shù)是________,所有偶函數(shù)是________(只填序號(hào));

(2)請(qǐng)你再分別寫出一個(gè)奇函數(shù),一個(gè)偶函數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

數(shù)學(xué)課堂上,徐老師出示一道試題:
如圖(十)所示,在正三角形ABC中,M是BC邊(不含端點(diǎn)B、C)上任意一點(diǎn),P是BC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AM=MN.
(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.
證明:在AB上截取EA=MC,連結(jié)EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM為等邊三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1=M1N1.是否還成立?(直接寫出答案,不需要證明)
(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDn…Xn”,請(qǐng)你猜想:當(dāng)∠AnMnNn   °時(shí),結(jié)論AnMn=MnNn仍然成立?(直接寫出答案,不需要證明)
    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(山東泰安卷)數(shù)學(xué)解析版 題型:解答題

數(shù)學(xué)課堂上,徐老師出示一道試題:如圖(十)所示,在正三角形ABC中,MBC邊(不含端點(diǎn)BC)上任意一點(diǎn),PBC延長線上一點(diǎn),N是∠ACP的平分線上一點(diǎn).若∠AMN=60°,求證:AMMN

    

(1)經(jīng)過思考,小明展示了一種正確的證明過程.請(qǐng)你將證明過程補(bǔ)充完整.

證明:在AB上截取EAMC,連結(jié)EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABC,EAMC,∴BAEABCMC,即BEBM

∴△BEM為等邊三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵_(dá)_______________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若將試題中的“正三角形ABC”改為“正方形A1B1C1D1”(如圖),N1是∠D1C1P1的平分線上一點(diǎn),則當(dāng)∠A1M1N1=90°時(shí),結(jié)論A1M1M1N1.是否還成立?(直接寫出答案,不需要證明)

(3) 若將題中的“正三角形ABC”改為“正多邊形AnBnCnDnXn”,請(qǐng)你猜想:當(dāng)∠AnMnNn    °時(shí),結(jié)論AnMnMnNn仍然成立?(直接寫出答案,不需要證明)

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京同步題 題型:填空題

在解直角三角形的過程中,一般要用的主要關(guān)系如下(如圖所示):在Rt△ABC中,∠C=90°,AC=b,BC=a,AB=c,第1題圖
①三邊之間的等量關(guān)系:(    );
②兩銳角之間的關(guān)系:(    );
③邊與角之間的關(guān)系:
=(    )        (    )
(    )     (    )
④直角三角形中成比例的線段(如圖所示)。
在Rt△ABC中,∠C=90°,CD⊥AB于D.CD2=(    );
AC2=(    );BC2=(    );AC·BC=(    )。
⑤直角三角形的主要線段(如圖所示)。
直角三角形斜邊上的中線等于斜邊的(    ),斜邊的中點(diǎn)是(    )。若r是Rt△ABC(∠C=90°)的內(nèi)切圓半徑,則r=(    )=(    )。
⑥直角三角形的面積公式.在Rt△ABC中,∠C=90°,S△ABC=(    )。(答案不唯一)

         第1題圖                                            第④小題圖                  第⑤小題圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

【考點(diǎn)】菱形的性質(zhì);全等三角形的判定與性質(zhì);等邊三角形的判定與性質(zhì).

【分析】根據(jù)菱形的四條邊都相等,先判定△ABD是等邊三角形,再根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,再求出DF=CE,然后利用“邊角邊”即可證明△BDF≌△DCE,從而判定①正確;根據(jù)全等三角形對(duì)應(yīng)角相等可得∠DBF=∠EDC,然后利用三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和可以求出∠DMF=∠BDC=60°,再根據(jù)平角等于180°即可求出∠BMD=120°,從而判定②正確;根據(jù)三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和以及平行線的性質(zhì)求出∠ABM=∠ADH,再利用“邊角邊”證明△ABM和△ADH全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AH=AM,對(duì)應(yīng)角相等可得∠BAM=∠DAH,然后求出∠MAH=∠BAD=60°,從而判定出△AMH是等邊三角形,判定出③正確;根據(jù)全等三角形的面積相等可得△AMH的面積等于四邊形ABMD的面積,然后判定出④錯(cuò)誤.

【解答】在菱形ABCD中,∵AB=BD,

∴AB=BD=AD,

∴△ABD是等邊三角形,

∴根據(jù)菱形的性質(zhì)可得∠BDF=∠C=60°,

∵BE=CF,

∴BC-BE=CD-CF,

即CE=DF,

在△BDF和△DCE中,CE=DF;∠BDF=∠C=60°;BD=CD,

∴△BDF≌△DCE(SAS),故①小題正確;

∴∠DBF=∠EDC,

∵∠DMF=∠DBF+∠BDE=∠EDC+∠BDE=∠BDC=60°,

∴∠BMD=180°-∠DMF=180°-60°=120°,故②小題正確;

∵∠DEB=∠EDC+∠C=∠EDC+60°,∠ABM=∠ABD+∠DBF=∠DBF+60°,

∴∠DEB=∠ABM,

又∵AD∥BC,

∴∠ADH=∠DEB,

∴∠ADH=∠ABM,

在△ABM和△ADH中,AB=AD;∠ADH=∠ABM;DH=BM,

∴△ABM≌△ADH(SAS),

∴AH=AM,∠BAM=∠DAH,

∴∠MAH=∠MAD+∠DAH=∠MAD+∠BAM=∠BAD=60°,

∴△AMH是等邊三角形,故③小題正確;

∵△ABM≌△ADH,

∴△AMH的面積等于四邊形ABMD的面積,

又∵△AMH的面積=AM·AM=AM2,

∴S四邊形ABMDAM2,S四邊形ABCD≠S四邊形ABMD,故④小題錯(cuò)誤,

綜上所述,正確的是①②③共3個(gè).

故選C.

【點(diǎn)評(píng)】本題考查了菱形的性質(zhì),全等三角形的判定與性質(zhì),等邊三角形的判定與性質(zhì),題目較為復(fù)雜,特別是圖形的識(shí)別有難度,從圖形中準(zhǔn)確確定出全等三角形并找出全等的條件是解題的關(guān)鍵.

查看答案和解析>>

同步練習(xí)冊(cè)答案