【題目】為了從甲、乙兩人中選拔一人參加射擊比賽,現(xiàn)對他們的射擊成績進行了測試,5次打靶命中的環(huán)數如下:
甲:8,7,9,8,8; 乙:9,6,10,8,7;
(1)將下表填寫完整:
平均數 | 中位數 | 方差 | |
甲 | 8 | ||
乙 | 8 | 2 |
(2)根據以上信息,若你是教練,你會選擇誰參加射擊比賽,理由是什么?
(3)若乙再射擊一次,命中8環(huán),則乙這六次射擊成績的方差會 .(填“變大”或“變小”或“不變”)
【答案】(1)8,8, ;(2)選擇甲參加射擊比賽,理由見解析;(3)變小.
【解析】試題分析:(1)根據平均數公式、方差公式、中位數的求法進行求解即可;
(2)根據甲乙的平均數、中位數、方差,在平均數相同的情況下,選擇方差較小的即可;
(3)根據方差公式求出乙六次的方差,再進行比較即可.
試題解析:(1)甲的平均數為: ×(8+7+9+8+8)=8,
甲的方差為: × [3×(8-8)2+(7-8)2+(9-8)2]= ,
乙的中位數:6,7,8,9,10,所以乙的中位數為:8,
故答案為:8,8, ;
(2)選擇甲參加射擊比賽,理由如下:
因為甲、乙兩人射擊成績的平均數相同都是8環(huán),但甲射擊成績的方差小于乙,因此甲的射擊成績更穩(wěn)定,所以,選擇甲參加射擊比賽;
(3)∵前5次乙的方差是2,乙再射擊一次,命中8環(huán),
∴乙這六次射擊成績的方差是: × [2×5+(8-8)2]= ,
∵<2,∴乙這六次射擊成績的方差會變小;
故答案為:變。
科目:初中數學 來源: 題型:
【題目】在長方形ABCD中,AB=3,BC=4,動點P從點A開始按A→B→C→D的方向運動到點D.如圖,設動點P所經過的路程為x,△APD的面積為y.(當點P與點A或D重合時,y=0)
(1)寫出y與x之間的函數解析式;
(2)畫出此函數的圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,點E在BC邊上,動點P以2厘米/秒的速度從點A出發(fā),沿△AED的邊按照A→E→D→A的順序運動一周.設點P從A出發(fā)經x(x>0)秒后,△ABP的面積是y.
(1)若AB=6厘米,BE=8厘米,當點P在線段AE上時,求y關于x的函數表達式;
(2)已知點E是BC的中點,當點P在線段ED和AD上時,求y關于x的函數表達式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在8×8的正方形網格中,每個小正方形的邊長為1,△ABC的三個頂點均在格點上.
(1)將△ABC向右平移3個單位長度,再向下平移1個單位長度,畫出對應圖形△A′B′C′;
(2)寫出A′、B′、C′坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知⊙O的直徑為10,點A,點B,點C在⊙O上,∠CAB的平分線交⊙O于點D.
(1)如圖①,若BC為⊙O的直徑,AB=6,求AC,BD,CD的長;
(2)如圖②,若∠CAB=60°,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,E為BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)當BC與AF滿足什么數量關系時,四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,Rt△ABC,∠C=90°,點D為AB上的一點,以AD為直徑的⊙O與BC相切于點E,連接AE.
(1)求證:AE平分∠BAC;
(2)若AC=8,OB=18,求BD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)圖象如圖,下列結論:① abc>0;② 2a+b=0;③ 當m≠1時,a+b>am2+bm;④ a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2,
其中正確的有( 。
A. ①②③ B. ②④ C. ②⑤ D. ②③⑤
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com