【題目】如圖,BAC的角平分線與BC的垂直平分線交與點(diǎn)D,DEAB,DFAC,垂足分別為E,F.AB=10,AC=8.

(1)求證:CF=BE;

(2) BE長(zhǎng).

【答案】1)證明見解析;(2BE1.

【解析】

1)連CD、BD,根據(jù)角平行線的性質(zhì)定理得到DEDF,根據(jù)線段垂直平分線的性質(zhì)得到CDBD,則可利用“HL“證明RtCDFRtBDE,從而得到CF=BE

2)先證明RtADFRtADE得到AEAF,設(shè)BECFx,則AE10x,AF8x,進(jìn)而列出方程求出x即可.

解:(1)連CDBD,

AD平分∠BAE,DEAB,DFAC

DEDF,

又∵DG垂直平分BC,

CDBD,

RtCDFRtBDE中,,

RtCDFRtBDEHL),

CF=BE;

2)在RtADFRtADE中,

RtADFRtADEHL),

AEAF

設(shè)BECFx,則AE10x,

AFACCF8x

8x10x,

解得x1,即BE1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,由12個(gè)形狀、大小完全相同的小矩形組成一個(gè)大的矩形網(wǎng)格,小矩形的頂點(diǎn)稱為這個(gè)矩形網(wǎng)格的格點(diǎn),已知這個(gè)大矩形網(wǎng)格的寬為6,ABC的頂點(diǎn)都在格點(diǎn).

(1)求每個(gè)小矩形的長(zhǎng)與寬;

(2)在矩形網(wǎng)格中找一格點(diǎn)E,使△ABE為直角三角形,求出所有滿足條件的線段AE的長(zhǎng)度.

(3)求sinBAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交A(1,4),B(-4,c)兩點(diǎn),

如圖2所示,點(diǎn)M、N都在直線AB,過(guò)M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n, 4 < m < 0 , n > 1 ,請(qǐng)?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時(shí),ME=NE.

(1)求反比例函數(shù)及一次函數(shù)的解析式;

(2)點(diǎn)Px軸上一動(dòng)點(diǎn),使|PA-PB|的值最大,求點(diǎn)P的坐標(biāo)及PAB的面積;

(3)如圖2所示,點(diǎn)M、N都在直線AB,過(guò)M、N分別作y軸的平行線交雙曲線于E、F,設(shè)M、N的橫坐標(biāo)分別為m、n, , n>1,請(qǐng)?zhí)骄?/span>,當(dāng)m、n滿足什么關(guān)系時(shí),ME=NE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的角平分線,DFAB,垂足為點(diǎn)F,DE=DG.若ADGAED的面積分別為5030,則EDF的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為打造書香校園,計(jì)劃購(gòu)進(jìn)甲、乙兩種規(guī)格的書柜放置新購(gòu)進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購(gòu)買甲種書柜3個(gè)、乙種書柜2個(gè),共需資金1020元;若購(gòu)買甲種書柜4個(gè),乙種書柜3個(gè),共需資金1440元.

(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?

(2)若該校計(jì)劃購(gòu)進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請(qǐng)?jiān)O(shè)計(jì)幾種購(gòu)買方案供這個(gè)學(xué)校選擇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果兩個(gè)角的差的絕對(duì)值等于,就稱這兩個(gè)角互為反余角,其中一個(gè)角叫做另一個(gè)角的反余角,例如,,,則互為反余角,其中的反余角,也是的反余角.

如圖為直線AB上一點(diǎn),于點(diǎn)O,于點(diǎn)O,則的反余角是______的反余角是______

若一個(gè)角的反余角等于它的補(bǔ)角的,求這個(gè)角.

如圖2,O為直線AB上一點(diǎn),,將繞著點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn)得,同時(shí)射線OP從射線OA的位置出發(fā)繞點(diǎn)O以每秒角的速度逆時(shí)針旋轉(zhuǎn),當(dāng)射線OP與射線OB重合時(shí)旋轉(zhuǎn)同時(shí)停止,若設(shè)旋轉(zhuǎn)時(shí)間為t秒,求當(dāng)t為何值時(shí),互為反余角圖中所指的角均為小于平角的角

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,ABCADE,AB=AC,AD=AE,且∠BAC=DAE=40°,CDBE相交于點(diǎn)F,連接AF則下列結(jié)論:①CD=BE:②△ABFACF;③∠BFD=140°;④FA平分∠BFD;⑤∠FAC=FAE.其中正確的結(jié)論有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形是長(zhǎng)方形,面積為

1)如圖1,邊上一點(diǎn),連接、,則三角形的面積為   (用含的代數(shù)式表示).

2是長(zhǎng)方形內(nèi)一點(diǎn),連接、、,三角形的面積為

①如圖2,則三角形的面積為   ;(用含的代數(shù)式表示)

②如圖3,連接,若三角形的面積為,則三角形的面積為   .(用含的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的中線,BE為三角形ABD中線,

1)若∠ABE20°,∠BAD45°,求∠BED的度數(shù);

2)畫出BEDBD邊上的高;

3)若ABC的面積為80,BD8,則點(diǎn)EBC邊的距離為多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案