【題目】如圖,△ABC和△ADE均為等腰直角三角形,連接BE,點(diǎn)F、G分別為AD、AC的中點(diǎn),連接FG.在△ADE繞A旋轉(zhuǎn)的過(guò)程中,當(dāng)B、D、E三點(diǎn)共線時(shí),AB=,AD=1,則線段FG的長(zhǎng)為___.
【答案】1
【解析】
連接CD、CE,如圖,證明△ABD≌△ACE,可得BD=CE,∠ABD=∠ACE,繼而可得∠CED=90°,設(shè)CE=x,則BE=x+,在Rt△BCE中,利用勾股定理可求得CE的長(zhǎng),在Rt△CDE中,利用勾股定理可求得CD長(zhǎng),然后再利用三角形中位線定理即可求得FG長(zhǎng).
連接CD、CE,如圖,
∵△ABC和△ADE均為等腰直角三角形,
∴AB=AC,BC=AB=,AD=AE,DE=AD=,∠BAC=∠DAE=90°,∠ADE=∠AED=45°,
∴∠BAD=∠CAE,
在△ABD和△ACE中
,
∴△ABD≌△ACE,
∴BD=CE,∠ABD=∠ACE,
∵∠ADE=∠ABD+∠BAD=45°,
∴∠CAE+∠ACE=45°,
∴∠CED=90°,
設(shè)CE=x,則BE=x+,
在Rt△BCE中,x2+(x+)2=()2,
解得x1=﹣2,x2=,
∴CE=,
在Rt△CDE中,CD==2,
∵點(diǎn)F、G分別為AD、AC的中點(diǎn),
∴FG為△ADC的中位線,
∴FG=CD=1,
故答案為:1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若要建一個(gè)長(zhǎng)方形雞場(chǎng),雞場(chǎng)的一邊靠墻,墻對(duì)面有一個(gè)2米寬的門(mén),另三邊用竹籬笆圍成,籬笆總長(zhǎng)33米,圍成長(zhǎng)方形的雞場(chǎng)除門(mén)之外四周不能有空隙.求:
(1)若墻長(zhǎng)為18米,要圍成雞場(chǎng)的面積為150平方米,則雞場(chǎng)的長(zhǎng)和寬各為多少米?
(2)圍成雞場(chǎng)的面積可能達(dá)到200平方米嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在等腰△ABC中,AB=AC=,BC=4,點(diǎn)D從A出發(fā)以每秒個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)以每秒4個(gè)單位的速度向點(diǎn)C運(yùn)動(dòng),在DE的右側(cè)作∠DEF=∠B,交直線AC于點(diǎn)F,設(shè)運(yùn)動(dòng)的時(shí)間為t秒,則當(dāng)△ADF是一個(gè)以AD為腰的等腰三角形時(shí),t的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A、B、C三點(diǎn)在同一直線上,分別以AB、BC為邊,在直線AC的同側(cè)作等邊△ABD和等邊△BCE,連接AE交BD于點(diǎn)M,連接CD交BE于點(diǎn)N,連接MN得△BMN.
(1)求證:AE=CD;
(2)試判斷△BMN的形狀,并說(shuō)明理由;
(3)設(shè)CD、AE相交于點(diǎn)G,求∠AGC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道“對(duì)稱(chēng)補(bǔ)缺”的思想是解決與軸對(duì)稱(chēng)圖形有關(guān)的問(wèn)題的一種重要的添加輔助線的策略,參考這種思想解決下列問(wèn)題.
在△ABC中,D為△ABC外一點(diǎn).
(1)如圖1,若AC平分∠BAD,CE⊥AB于點(diǎn)E,∠ B+∠ADC=180,求證:BC=CD;
(2)如圖2,若∠ACB=90°, AC=BC,F是AC上一點(diǎn),AD⊥BF交BF延長(zhǎng)線于點(diǎn)D,且BF是∠CBA的角平分線.求證:2AD=BF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=﹣x2+x+與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,對(duì)稱(chēng)軸與x軸交于點(diǎn)D.
(1)求直線BC的解析式;
(2)如圖2,點(diǎn)P為直線BC上方拋物線上一點(diǎn),連接PB、PC.當(dāng)△PBC的面積最大時(shí),在線段BC上找一點(diǎn)E(不與B、C重合),使PE+BE的值最小,求點(diǎn)P的坐標(biāo)和PE+BE的最小值;
(3)如圖3,點(diǎn)G是線段CB的中點(diǎn),將拋物線y=﹣x2+x+沿x軸正方向平移得到新拋物線y′,y′經(jīng)過(guò)點(diǎn)D,y′的頂點(diǎn)為F.在拋物線y′的對(duì)稱(chēng)軸上,是否存在一點(diǎn)Q,使得△FGQ為直角三角形?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,.
⑴已知線段AB的垂直平分線與BC邊交于點(diǎn)P,連結(jié)AP,求證:;
⑵以點(diǎn)B為圓心,線段AB的長(zhǎng)為半徑畫(huà)弧,與BC邊交于點(diǎn)Q,連結(jié)AQ,若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲乙兩名采購(gòu)員去同一家飼料公司分別購(gòu)買(mǎi)兩次飼料,兩次購(gòu)買(mǎi)飼料價(jià)格分別為m元/千克和n元/千克,且m≠n,兩名采購(gòu)員的采購(gòu)方式也不同,其中甲每次購(gòu)買(mǎi)1000千克,乙每次用去800元,而不管購(gòu)買(mǎi)多少飼料.
(1)甲、乙所購(gòu)飼料的平均單價(jià)各是多少?(用字母m、n表示)
(2)誰(shuí)的購(gòu)貨方式更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】作圖題:已知∠MAB=60°,以AB的長(zhǎng)為菱形ABCD的邊長(zhǎng),點(diǎn)D在AM上,
(1)作出這個(gè)菱形.(保留作圖痕跡,不寫(xiě)作法,不用證明)
(2)若AB=2,則對(duì)角線AC的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com