【題目】如圖,AB是⊙O的直徑,點C是⊙O外的一點,CB與⊙O相切于點B,AC交⊙O于點D,點E上的一點(不與點A,BD重合),若∠C48°,則∠AED的度數(shù)為_____

【答案】48°132°

【解析】

先利用切線的性質(zhì)及等邊對等角求出∠CAB,∠ADO的度數(shù),然后利用三角形內(nèi)角和定理求出∠AOD的度數(shù),然后分點E上和點E上兩種情況,分別進行討論即可.

CB與⊙O相切于點B,

ABBC,

∴∠ABC90°

∵∠C48°,

∴∠CAB90°48°42°,

連接OD,

OAOD,

∴∠CAB=∠ADO42°

當點E 上時,

AED ,

當點E上時,

AED180°48°132°

故答案為:48°132°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】附加題,已知:矩形,,動點從點開始向點運動,動點速度為每秒1個單位,以為對稱軸,把折疊,所得與矩形重疊部分面積為,運動時間為.

1)當運動到第幾秒時點恰好落在上;

2)求關(guān)于的關(guān)系式,以及的取值范圍;

3)在第幾秒時重疊部分面積是矩形面積的;

4)連接,以為對稱軸,將作軸對稱變換,得到,當為何值時,點在同一直線上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對稱軸為x1的拋物線經(jīng)過A(﹣1,0),B2,﹣3)兩點.

1)求拋物線的解析式;

2P是拋物線上的動點,連接PO交直線AB于點Q,當QOP中點時,求點P的坐標;

3C在直線AB上,D在拋物線上,E在坐標平面內(nèi),以B,C,D,E為頂點的四邊形為正方形,直接寫出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列10×10的網(wǎng)格中,橫、縱坐標均為整點的數(shù)叫做格點,例如A2,1)、B54)、C1,8)都是格點.

1)直接寫出ABC的面積;

2)將ABC繞點B逆時針旋轉(zhuǎn)90°得到A1BC1,在網(wǎng)格中畫出A1BC1;

3)在圖中畫出線段EF,使它同時滿足以下條件:①點EABC內(nèi);②點E,F都是格點;③EF三等分BC;④EF.請寫出點E,F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個盒子里有標號分別為1,2,3,4的四個球,這些球除標號數(shù)字外都相同.

(1)從盒中隨機摸出一個小球,求摸到標號數(shù)字為奇數(shù)的球的概率;

(2)甲、乙兩人用這四個小球玩摸球游戲,規(guī)則是:甲從盒中隨機摸出一個小球,記下標號數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機摸出一個小球,并記下標號數(shù)字.若兩次摸到球的標號數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到球的標號數(shù)字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲?qū)、乙兩人是否公平?/span>

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】頂角為36°的等腰三角形稱為黃金三角形,利用黃金三角形求的準確值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩人進行羽毛球比賽,羽毛球飛行的路線為拋物線的一部分. 如圖,甲在O點正上方1 m的點P發(fā)出一球,羽毛球飛行的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式:,已知點O與球網(wǎng)的水平距離為5 m,球網(wǎng)的高度1.55 m.

1)當時,求h的值,并通過計算判斷此球能否過網(wǎng);

2)若甲發(fā)球過網(wǎng)后,羽毛球飛行到與點O的水平距離為7m,離地面的高度為Q處時,乙扣球成功,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與函數(shù)的圖象交于,兩點,且點的坐標為

1)求的值;

2)已知點,過點作平行于軸的直線,交直線于點,交函數(shù)的圖象于點

①當時,求線段的長;

②若,結(jié)合函數(shù)的圖象,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以矩形ABCD的邊CD為直徑作⊙O,點EAB 的中點,連接CE交⊙O于點F,連接AF并延長交BC于點H

1)若連接AO,試判斷四邊形AECO的形狀,并說明理由;

2)求證:AH是⊙O的切線;

3AB6CH2,則AH的長為

查看答案和解析>>

同步練習冊答案