【題目】甲、乙兩同學(xué)的家與學(xué)校的距離均為3000米.甲同學(xué)先步行600米,然后乘公交車去學(xué)校、乙同學(xué)騎自行車去學(xué)校.已知甲步行速度是乙騎自行車速度的 ,公交車的速度是乙騎自行車速度的2倍.甲乙兩同學(xué)同時從家發(fā)去學(xué)校,結(jié)果甲同學(xué)比乙同學(xué)早到2分鐘.
(1)求乙騎自行車的速度;
(2)當甲到達學(xué)校時,乙同學(xué)離學(xué)校還有多遠?

【答案】
(1)解:設(shè)乙騎自行車的速度為x米/分鐘,則甲步行速度是 x米/分鐘,公交車的速度是2x米/分鐘,

根據(jù)題意得 + = ﹣2,

解得:x=300米/分鐘,

經(jīng)檢驗x=300是方程的根,

答:乙騎自行車的速度為300米/分鐘


(2)解:∵300×2=600米,

答:當甲到達學(xué)校時,乙同學(xué)離學(xué)校還有600米


【解析】(1)設(shè)乙騎自行車的速度為x米/分鐘,則甲步行速度是 x米/分鐘,公交車的速度是2x米/分鐘, 根據(jù)題意列方程即可得到結(jié)論;(2)300×2=600米即可得到結(jié)果.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,測得CAO=45°,輪船甲自西向東勻速行駛,同時輪船乙沿正北方向勻速行駛,它們的速度分別為45km/h和36km/h,經(jīng)過0.1h,輪船甲行駛至B處,輪船乙行駛至D處,測得DBO=58°,此時B處距離碼頭O多遠?(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1,60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在2014年5月崇左市教育局舉行的“經(jīng)典詩朗誦”演講比賽中,有11名學(xué)生參加決賽,他們決賽的成績各不相同,其中的一名學(xué)生想知道自己能否進入前6名,不僅要了解自己的成績,還要了解這11名學(xué)生成績的(
A.眾數(shù)
B.中位數(shù)
C.平均數(shù)
D.方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】配方法解一元二次方程x216x+240,下列變形結(jié)果,正確的是(  )

A.x428B.x4240C.x828D.x8240

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知RtABC中,B=90°,AC=20,AB=10,P是邊AC上一點(不包括端點A、C),過點P作PEBC于點E,過點E作EFAC,交AB于點F.設(shè)PC=x,PE=y.

(1)求y與x的函數(shù)關(guān)系式;

(2)是否存在點P使PEF是Rt?若存在,求此時的x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A、B、C三點在同一直線上時(如圖1),求證:M為AN的中點;
(2)將圖1中△BCE繞點B旋轉(zhuǎn),當A、B、E三點在同一直線上(如圖2),求證:△CAN為等腰直角三角形;
(3)將圖1中△BCE繞點B旋轉(zhuǎn)到圖3的位置時,(2)中的結(jié)論是否仍然成立?若成立,試證明之;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某經(jīng)濟開發(fā)區(qū)今年一月份工業(yè)產(chǎn)值達到80億元,第一季度總產(chǎn)值為275億元,問二、三月平均每月的增長率是多少?設(shè)平均每月的增長率為x,根據(jù)題意所列方程是( )
A.80(1+x)2=275
B.80+80(1+x)+80(1+x)2=275
C.80(1+x)3=275
D.80(1+x)+80(1+x)2=275

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016江西。設(shè)拋物線的解析式為 ,過點B1 (1,0 )作x軸的垂線,交拋物線于點A1(1,2 );過點B2 (1,0 )作x軸的垂線,交拋物線于點A2 ;過點 ,0 (n為正整數(shù) )作x軸的垂線,交拋物線于點 ,連接 ,得直角三角形

(1)求a的值;

(2)直接寫出線段 ,的長(用含n的式子表示);

(3)在系列Rt 中,探究下列問題:

當n為何值時,Rt是等腰直角三角形?

設(shè)1k<mn (k,m均為正整數(shù)),問是否存在Rt與Rt相似?若存在,求出其相似比;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的有(  )

①兩點之間的所有連線中,線段最短;

②相等的角是對頂角;

③過直線外一點有且僅有一條直線與已知直線平行;

④兩點之間的距離是兩點間的線段;

⑤如果一個角的兩邊與另一個角的兩邊垂直,那么這兩個角相等.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案