【題目】已知y=(3-2m)x+m-1是y關于x的一次函數(shù).
(1)若y隨著x的增大而減小,求m的取值范圍;
(2)若函數(shù)的圖象與直線y=-3x平行,試確定該函數(shù)的表達式;
(3)若函數(shù)的圖象經(jīng)過點(-1,5m+2),試確定該函數(shù)的表達式.
【答案】(1) m>;(2) y=-3x+2;(3) y=9x-4.
【解析】(1)由y隨x的增大而減小知k<0,據(jù)此列出關于m的不等式,解之可得;
(2)由兩直線平行時知斜率相等,得出關于m的方程,解之得出m的值即可得;
(3)將點(﹣1,5m+2)代入直線解析式可得m的值,據(jù)此可得.
(1)根據(jù)題意知,3﹣2m<0,解得:m>;
(2)根據(jù)題意,得:3﹣2m=﹣3,解得:m=3,則所求函數(shù)解析式為y=﹣3x+2;
(3)將(﹣1,5m+2)代入y=(3﹣2m)x+m﹣1,得:﹣(3﹣2m)+m﹣1=5m+2,解得:m=﹣3,則所求函數(shù)解析式為y=9x﹣4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L1∥L2 , 圓O與L1和L2分別相切于點A和點B,點M和點N分別是L1和L2上的動點,MN沿L1和L2平移,圓O的半徑為1,∠1=60°,當MN與圓相切時,AM的長度等于 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E、F、G、H分別在菱形ABCD的四條邊上,且BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE得到四邊形EFGH.
(1)求證:四邊形EFGH是矩形;
(2)設AB=a,∠A=60°,當BE為何值時,矩形EFGH的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程x2﹣(2k﹣3)x+k2+1=0有兩個不相等的實數(shù)根x1、x2 .
(1)求k的取值范圍;
(2)試說明x1<0,x2<0;
(3)若拋物線y=x2﹣(2k﹣3)x+k2+1與x軸交于A、B兩點,點A、點B到原點的距離分別為OA、OB,且OA+OB=2OAOB﹣3,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華同學設計了一個圓的直徑的測量器.標有刻度的兩把尺子OA,OB在O點被釘在一起,并使它們保持垂直,在測直徑時,把O點靠在圓周上,尺子OA與圓交于點F,尺子OB與圓交于點E,讀得OF為8個單位長度,OE為6個單位長度.則圓的直徑為( )
A.25個單位長度
B.14個單位長度
C.12個單位長度
D.10個單位長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓直徑,D、E為圓周上兩點,且AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊三角形ABC中,點P在△ABC內(nèi),點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com