【題目】如圖,AB為半圓直徑,D、E為圓周上兩點(diǎn),且AD=DE,AE與BD交于點(diǎn)C,則圖中與∠BCE相等的角有(
A.2個
B.3個
C.4個
D.5個

【答案】D
【解析】解:∵AD=DE,AO=DO=OE, ∴△OAD≌△OED,
∴∠DAB=∠ADO=∠ODE=∠DEO;
∵AB是⊙O的直徑,
∴∠ADB=90°,∠AEB=90°,
∵AD=DE,
∴∠ABD=∠DBE,
∴∠DAB=90°﹣∠ABD,∠BCE=90°﹣∠DBE,
∴∠DAB=∠BCE,
∴∠BCE=∠DCA=∠DAB=∠ADO=∠ODE=∠DEO,
則與∠BCE相等的角有5個.
故選D.
【考點(diǎn)精析】通過靈活運(yùn)用圓心角、弧、弦的關(guān)系和圓周角定理,掌握在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等;在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一天,某客運(yùn)公司的甲、乙兩輛客車分別從相距380千米的A、B兩地同時出發(fā)相向而行,并以各自的速度勻速行駛,兩車行駛2小時時甲車先到達(dá)服務(wù)區(qū)C地,此時兩車相距20千米,甲車在服務(wù)區(qū)C地休息了20分鐘,然后按原速度開往B地;乙車行駛2小時15分鐘時也經(jīng)過C地,未停留繼續(xù)開往A地.(友情提醒:畫出線段圖幫助分析)

(1)乙車的速度是________千米/小時,B、C兩地的距離是________千米, A、C兩地的距離是________千米;

(2)求甲車的速度;

(3)這一天,乙車出發(fā)多長時間,兩車相距200千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B是數(shù)軸上的兩個點(diǎn),點(diǎn)A表示的數(shù)為13,點(diǎn)B表示的數(shù)為,動點(diǎn)P從點(diǎn)B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時間為tt>0)秒.

(1)點(diǎn)P表示的數(shù)為__________(用含t的代數(shù)式表示);

(2)點(diǎn)P運(yùn)動多少秒時,PB=2PA

(3)MBP的中點(diǎn),NPA的中點(diǎn),點(diǎn)P在運(yùn)動的過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請直接寫出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知y=(3-2m)x+m-1y關(guān)于x的一次函數(shù).

(1)y隨著x的增大而減小,求m的取值范圍;

(2)若函數(shù)的圖象與直線y=-3x平行,試確定該函數(shù)的表達(dá)式;

(3)若函數(shù)的圖象經(jīng)過點(diǎn)(-1,5m+2),試確定該函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車從A城出發(fā)沿相同的路線勻速行駛至B城.在整個行駛過程中,甲、乙兩車離開A城的距離y(千米)與甲車行駛的時間t(小時)之間的函數(shù)關(guān)系如圖所示,則下列結(jié)論:①A、B兩城相距300千米;②乙車比甲車晚出發(fā)1小時,卻早到1小時;③乙車出發(fā)后2.5小時追上甲車;④當(dāng)甲、乙兩車相距50千米時,t.其中正確的是________(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是等腰直角△ABC外一點(diǎn),把BP繞直角頂點(diǎn)BB順時針旋轉(zhuǎn)90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,則PB:P′A的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點(diǎn),過D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.

(1)當(dāng)D點(diǎn)在BC的什么位置時,DE=DF?請說明理由.

(2)DE,DF,CG的長之間存在著怎樣的等量關(guān)系?并說明理由.

(3)若D在底邊BC的延長線上,(2)中的結(jié)論還成立嗎?若不成立,又存在怎樣的關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(1,0).
(1)當(dāng)b=2,c=﹣3時,求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經(jīng)過點(diǎn)B(m,e),C(3﹣m,e). ①求該二次函數(shù)圖象的對稱軸;
②若對任意實(shí)數(shù)x,函數(shù)值y都不小于 ,求此時二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為直線AB上一點(diǎn),OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有 個小于平角的角;

(2)若∠AOC=50°,則∠COE的度數(shù)= ,BOE的度數(shù)= ;

(3)猜想:OE是否平分∠BOC?請通過計(jì)算說明你猜想的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案