【題目】如圖,P是等腰直角△ABC外一點,把BP繞直角頂點BB順時針旋轉90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,則PB:P′A的值為 .
【答案】1:2
【解析】解:如圖,連接AP, ∵BP繞點B順時針旋轉90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵ ,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:3,
∴AP=3P′A,
連接PP′,則△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′= PB,
∵∠AP′B=135°,
∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
設P′A=x,則AP=3x,
根據(jù)勾股定理,PP′= = =2 x,
∴PP′= PB=2 x,
解得PB=2x,
∴P′A:PB=x:2x=1:2.
故答案是:1:2.
【考點精析】通過靈活運用等腰直角三角形和旋轉的性質(zhì),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;①旋轉后對應的線段長短不變,旋轉角度大小不變;②旋轉后對應的點到旋轉到旋轉中心的距離不變;③旋轉后物體或圖形不變,只是位置變了即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線L:y=-x+2與x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點M從A點以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點的坐標;
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關系式;
(3)當t為何值時△COM≌△AOB,并求此時M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小華同學設計了一個圓的直徑的測量器.標有刻度的兩把尺子OA,OB在O點被釘在一起,并使它們保持垂直,在測直徑時,把O點靠在圓周上,尺子OA與圓交于點F,尺子OB與圓交于點E,讀得OF為8個單位長度,OE為6個單位長度.則圓的直徑為( )
A.25個單位長度
B.14個單位長度
C.12個單位長度
D.10個單位長度
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為半圓直徑,D、E為圓周上兩點,且AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有( )
A.2個
B.3個
C.4個
D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】填空并在括號內(nèi)加注理由。
如圖,已知∥,、分別平分和
求證:
證明:∵∥
∴ = ( )
∵、平分、
∴=
∴= ( )
∴=
∴ ∥ ( )
∴=∠ ( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,點D在底邊BC上,添加下列條件后,仍無法判定△ABD≌△ACD的是( )
A. BD=CD B. ∠BAD=∠CAD C. ∠B=∠C D. ∠ADB=∠ADC
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工.若進行粗加工,每噸加工費用為600元,需 天,每噸售價4000元;若進行精加工,每噸加工費用為900元,需 天,每噸售價4500元.現(xiàn)將這50噸原料全部加工完.設其中粗加工x噸,獲利y元.
(1)請完成表格并求出y與x的函數(shù)關系式(不要求寫自變量的范圍); 表一
粗加工數(shù)量/噸 | 3 | 7 | x |
精加工數(shù)量/噸 | 47 |
表二
粗加工數(shù)量/噸 | 3 | 7 | x |
粗加工獲利/元 | 2800 | ||
精加工獲利/元 | 25800 |
y與x的函數(shù)關系式
(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤,最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com