【題目】已知二次函數(shù)y=ax2+bx+c的圖象經過點A(1,0).
(1)當b=2,c=﹣3時,求二次函數(shù)的解析式及二次函數(shù)最小值;
(2)二次函數(shù)的圖象經過點B(m,e),C(3﹣m,e). ①求該二次函數(shù)圖象的對稱軸;
②若對任意實數(shù)x,函數(shù)值y都不小于 ,求此時二次函數(shù)的解析式.

【答案】
(1)解:將b=2,c=﹣3代入得:y=ax2+2x﹣3.

將x=1,y=0代入,a+2﹣3=0,

∴a=1.

∴y=x2+2x﹣3=(x+1)2﹣4,

∴當x=﹣1時,y最小值為﹣4.


(2)解:①由題意可知:對稱軸x= =

②∵﹣ =

∴b=﹣3a,又∵a+b+c=0,

∴c=2a,

∴y=ax2﹣3ax+2a

頂點縱坐標為 =

∵函數(shù)值不小于 ,

∴a>0,且﹣ ,

∴a2﹣2a+1≤0,

∴(a﹣1)2≤0,

∵(a﹣1)2≥0,

∴a﹣1=0,

∴a=1.


【解析】(1)利用待定系數(shù)法以及配方法即可解決問題.(2)①根據(jù)對稱性B、C關于對稱軸對稱,即可解決問題.②首先求出b、c(用a表示),想辦法列出不等式即可解決問題.
【考點精析】通過靈活運用二次函數(shù)的性質,掌握增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E、F、G、H分別在菱形ABCD的四條邊上,且BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE得到四邊形EFGH.
(1)求證:四邊形EFGH是矩形;
(2)設AB=a,∠A=60°,當BE為何值時,矩形EFGH的面積最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓直徑,D、E為圓周上兩點,且AD=DE,AE與BD交于點C,則圖中與∠BCE相等的角有(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對于任意實數(shù)m,方程總有兩個不相等的實數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列一元一次方程解應用題:

學生在素質教育基地進行社會實踐活動,幫助農民伯伯采摘了黃瓜和茄子共80千克,了解到這些蔬菜的種植成本共180元,還了解到如下信息:

(1)求采摘的黃瓜和茄子各多少千克?

(2)這些采摘的黃瓜和茄子可賺多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,ABAC,點D在底邊BC上,添加下列條件后,仍無法判定△ABD≌△ACD的是(  )

A. BDCD B. BADCAD C. BC D. ADBADC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,可以理解為,它表示:數(shù)軸上表示數(shù)a的點到原點的距離,這是絕對值的幾何意義。進一步地,數(shù)軸上的兩個點A,B分別用數(shù)表示,那么A,B兩點之間的距離為,反過來,式子的幾何意義是:數(shù)軸上表示數(shù)的點和表示數(shù)的點之間的距離。利用此結論,的意義就是數(shù)軸上表示數(shù)的點到表示-2和表示3的點的距離之和是5,若是整數(shù),則符合的個數(shù)是(

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABPACQ,BPCQ.

(1)求證:△ABP≌△ACQ

(2)請判斷△APQ是什么三角形,試說明你的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在4×4的正方形方格網(wǎng)中,小正方形的頂點稱為格點,△ABC的頂點都在格點上,則圖中∠ABC的余弦值是(
A.
B.
C.
D.2

查看答案和解析>>

同步練習冊答案