【題目】一節(jié)數(shù)學(xué)課后,老師布置了一道課后練習(xí)題:
如圖1,是的直徑,點(diǎn)在上,,垂足為,,分別交、于點(diǎn)、.求證:.
圖1 圖2
(1)本題證明的思路可用下列框圖表示:
根據(jù)上述思路,請你完整地書寫本題的證明過程.
(2)如圖2,若點(diǎn)和點(diǎn)在的兩側(cè),、的延長線交于點(diǎn),的延長線交于點(diǎn),其余條件不變,(1)中的結(jié)論還成立嗎?請說明理由;
(3)在(2)的條件下,若,,求
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,AD=6,點(diǎn)E在AD邊上,且AE=4,EF⊥BE交CD于點(diǎn)F.
(1)求證:△ABE∽△DEF;
(2)求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+3的圖象經(jīng)過點(diǎn) (-3,0),(2,-5).
(1)試確定此二次函數(shù)的解析式;
(2)請你判斷點(diǎn)P(-2,3)是否在這個(gè)二次函數(shù)的圖象上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的頂點(diǎn)A、B在x軸的正半軸上,反比例函數(shù)y=(k≠0)在第一象限內(nèi)的圖象經(jīng)過點(diǎn)D,交BC于點(diǎn)E.若AB=4,CE=2BE,tan∠AOD=,則k的值_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,∠ACB=90°,OC=2BO,AC=6,點(diǎn)B的坐標(biāo)為(1,0),拋物線y=﹣x2+bx+c經(jīng)過A、B兩點(diǎn).
(1)求點(diǎn)A的坐標(biāo);
(2)求拋物線的解析式;
(3)點(diǎn)P是直線AB上方拋物線上的一點(diǎn),過點(diǎn)P作PD垂直x軸于點(diǎn)D,交線段AB于點(diǎn)E,使PE=DE.
①求點(diǎn)P的坐標(biāo);
②在直線PD上是否存在點(diǎn)M,使△ABM為直角三角形?若存在,求出符合條件的所有點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會(huì)為了解節(jié)能減排、垃圾分類知識(shí)
的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個(gè)統(tǒng)計(jì)圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計(jì)該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c過點(diǎn)A(0,3),且拋物線上任意不同兩點(diǎn)M(x1,y1),N(x2,y2)都滿足:當(dāng)x1<x2<0時(shí),(x1﹣x2)(y1﹣y2)>0;當(dāng)0<x1<x2時(shí),(x1﹣x2)(y1﹣y2)<0.以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且B在C的左側(cè),△ABC有一個(gè)內(nèi)角為60°,則拋物線的解析式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB=4,BC=6.若不改變矩形ABCD的形狀和大小,當(dāng)矩形頂點(diǎn)A在x軸的正半軸上左右移動(dòng)時(shí),矩形的另一個(gè)頂點(diǎn)D始終在y軸的正半軸上隨之上下移動(dòng).
(1)當(dāng)∠OAD=30°時(shí),求點(diǎn)C的坐標(biāo);
(2)設(shè)AD的中點(diǎn)為M,連接OM、MC,當(dāng)四邊形OMCD的面積為時(shí),求OA的長;
(3)當(dāng)點(diǎn)A移動(dòng)到某一位置時(shí),點(diǎn)C到點(diǎn)O的距離有最大值,請直接寫出最大值,并求此時(shí)cos∠OAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC~△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,點(diǎn)D在線段BC上運(yùn)動(dòng),
(1)如圖1,求證:△ABD∽△ACE
(2)如圖2,當(dāng)AD⊥BC時(shí),判斷四邊形ADCE的形狀,并證明.
(3)當(dāng)點(diǎn)D從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C時(shí),設(shè)P為線段DE的中點(diǎn),在點(diǎn)D的運(yùn)動(dòng)過程中,求CP的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com