已知拋物線(xiàn)y=a(x-1)2+h(a≠0)與x軸交于A(yíng)(x1,0),B(3,0)兩點(diǎn),則線(xiàn)AB的長(zhǎng)度為( )
A.1
B.2
C.3
D.4
【答案】分析:利用頂點(diǎn)坐標(biāo)公式與兩根之和公式可以求出方程的另一根.
解答:解:∵二次函函數(shù)y=a(x-1)2+h的頂點(diǎn)坐標(biāo)(1,h)
∴-=1則-=2
又∵x2=3
∴x1+x2=x1+3=2
解得x1=-1
∴AB的長(zhǎng)度=|x1-x2|=|(-1)-3|=4.
故選D.
點(diǎn)評(píng):要求熟悉二次函數(shù)的頂點(diǎn)坐標(biāo)公式與一元二次方程兩根之和的關(guān)系以及兩點(diǎn)距離公式|x1-x2|,并能熟練運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的精英家教網(wǎng)正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
152

(1)求此拋物線(xiàn)的解析式;
(2)求直線(xiàn)AC和BC的方程;
(3)如果P是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過(guò)點(diǎn)P作直線(xiàn)y=m(m為常數(shù)),與直線(xiàn)BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)廊橋是我國(guó)古老的文化遺產(chǎn).如圖,是某座拋物線(xiàn)型的廊橋示意圖,已知拋物線(xiàn)的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線(xiàn)上距水面AB高為8米的點(diǎn)E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=ax2(a>0)上有A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1,2.如果△AOB(O是坐標(biāo)原點(diǎn))是直角三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•廣州)已知拋物線(xiàn)y1=ax2+bx+c(a≠0,a≠c)過(guò)點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線(xiàn)不經(jīng)過(guò)第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說(shuō)明理由;
(3)若直線(xiàn)y2=2x+m經(jīng)過(guò)點(diǎn)B,且于該拋物線(xiàn)交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)經(jīng)過(guò)點(diǎn)A(1,0)、B(2,-3)、C(0,4)三點(diǎn).
(1)求此拋物線(xiàn)的解析式;
(2)如果點(diǎn)D在這條拋物線(xiàn)上,點(diǎn)D關(guān)于這條拋物線(xiàn)對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)是點(diǎn)C,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案