【題目】如圖,已知網(wǎng)格上每個(gè)小的正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度,點(diǎn)A、B、C在格點(diǎn)上.

1)直接在平面直角坐標(biāo)系中作出關(guān)于軸對(duì)稱(chēng)的圖形(點(diǎn)A對(duì)應(yīng)點(diǎn)A1,點(diǎn)C對(duì)應(yīng)點(diǎn)C1);

2的面積為 ;

3)點(diǎn)B到直線A1C1的距離為 (直接填空);

【答案】1)見(jiàn)解析;(25;(32

【解析】

1)先作出點(diǎn)A、C關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A1、C1,再順次連接即可;

2)如圖2,利用SABC= S梯形ADOC SABD SOBC 計(jì)算即可;

3)先根據(jù)勾股定理求出A1C1的長(zhǎng),再根據(jù)三角形的面積解答即可.

解:(1)如圖1所示,△A1BC1即為所求.

2)如圖2SABC= S梯形ADOC SABD SOBC =

故答案為:5;

3)設(shè)點(diǎn)B到直線A1C1的距離為h,

=SABC=5

,∴h=2;

故答案為2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:分式和分?jǐn)?shù)有著很多的相似點(diǎn).如類(lèi)比分?jǐn)?shù)的基本性質(zhì),我們得到了分式的基本性質(zhì);類(lèi)比分?jǐn)?shù)的運(yùn)算法則,我們得到了分式的運(yùn)算法則;等等.小學(xué)里,把分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù).類(lèi)似地,我們把分子整式的次數(shù)小于分母整式的次數(shù)的分式稱(chēng)為真分式;反之,稱(chēng)為假分式.任何一個(gè)假分式都可以化成整式與真分式的和的形式,如:

(1)下列分式中,屬于真分式的是:________(填序號(hào));

(2)將假分式化成整式與真分式的和的形式: ________________;

(3)將假分式化成整式與真分式的和的形式: __________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一項(xiàng)工程,甲,乙兩公司合做,12天可以完成,共需付施工費(fèi)102000元;如果甲,乙兩公司單獨(dú)完成此項(xiàng)工程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元.

(1)甲,乙兩公司單獨(dú)完成此項(xiàng)工程,各需多少天?

(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司的施工費(fèi)較少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象過(guò)A(﹣3,0),B(1,0),C(0,3),點(diǎn)D在函數(shù)圖象上,點(diǎn)C,D是二次函數(shù)圖象上的一對(duì)對(duì)稱(chēng)點(diǎn),一次函數(shù)圖象過(guò)點(diǎn)B,D,求:

(1)一次函數(shù)和二次函數(shù)的解析式;

(2)寫(xiě)出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對(duì)稱(chēng)軸是x=﹣1,且過(guò)點(diǎn)(﹣3,0),下列說(shuō)法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(3,y2)是拋物線上兩點(diǎn),則y1<y2,其中說(shuō)法正確的是(  )

A. ①② B. ②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2﹣4x+c的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),與x軸交于點(diǎn)A﹣40).

1)求二次函數(shù)的解析式;

2)在拋物線上存在點(diǎn)P,滿足SAOP=8,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,CDAB邊上的中線,ECD的中點(diǎn),過(guò)點(diǎn)CAB的平行線交AE的延長(zhǎng)線于點(diǎn)F,連接BF

1)求證:四邊形BDCF是菱形;

2)當(dāng)RtABC中的邊或角滿足什么條件時(shí)?四邊形BDCF是正方形,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽取20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:

(1)這批樣品的質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?

(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過(guò)B(﹣2,6),C(2,2)兩點(diǎn).

(1)記拋物線頂點(diǎn)為D,求△BCD的面積;

(2)若直線y=﹣x向上平移b個(gè)單位所得的直線與拋物線段BDC(包括端點(diǎn)B、C)部分有兩個(gè)交點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案