【題目】某校招聘一名數(shù)學(xué)老師,對(duì)應(yīng)聘者分別進(jìn)行了教學(xué)能力、科研能力和組織能力三項(xiàng)測(cè)試,其中甲、乙兩名應(yīng)聘者的成績(jī)?nèi)缬冶恚海▎挝唬悍郑?/span>
教學(xué)能力 | 科研能力 | 組織能力 | |
甲 | 81 | 85 | 86 |
乙 | 92 | 80 | 74 |
(1)若根據(jù)三項(xiàng)測(cè)試的平均成績(jī)?cè)诩、乙兩人中錄用一人,那么誰(shuí)將被錄用?
(2)根據(jù)實(shí)際需要,學(xué)校將教學(xué)、科研和組織能力三項(xiàng)測(cè)試得分按 5:3:2 的比確定每人的最后成績(jī),若按此成績(jī)?cè)诩、乙兩人中錄用一人,誰(shuí)將被錄用?
【答案】(1)甲被錄用;(2)乙被錄用.
【解析】分析:(1)根據(jù)平均數(shù)的計(jì)算公式分別進(jìn)行計(jì)算,平均數(shù)大的將被錄用;
(2)根據(jù)加權(quán)平均數(shù)的計(jì)算公式分別進(jìn)行解答,加權(quán)平均數(shù)大的將被錄用;
詳解: (1)甲的平均成績(jī)?yōu)?/span>=84(分);
乙的平均成績(jī)?yōu)?/span>=82(分),
因?yàn)榧椎钠骄煽?jī)高于乙的平均成績(jī),
所以甲被錄用;
(2)根據(jù)題意,甲的平均成績(jī)?yōu)?/span>=83.2(分),
乙的平均成績(jī)?yōu)?/span>=84.8(分),
因?yàn)榧椎钠骄煽?jī)低于乙的平均成績(jī),
所以乙被錄用.
點(diǎn)睛: 本題重點(diǎn)考查了算術(shù)平均數(shù)和加權(quán)平均數(shù)的計(jì)算公式,希望同學(xué)們要牢記這些公式,并能夠靈活運(yùn)用.
數(shù)據(jù)x1、x2、……、xn的算術(shù)平均數(shù):=(x1+x2+……+xn),
加權(quán)平均數(shù):(其中w1、w2、……wn為權(quán)數(shù)).
算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠B,∠C的平分線交于點(diǎn)O,D是外角與內(nèi)角平分線交點(diǎn),E是外角平分線交點(diǎn),若∠BOC=120°,則∠D=( )
A. 15° B. 20° C. 25° D. 30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將進(jìn)貨價(jià)為40元的臺(tái)燈以50元的銷(xiāo)售價(jià)售出,平均每月能售出800個(gè).市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)每上漲1元時(shí),其銷(xiāo)售量就將減少10個(gè).若設(shè)每個(gè)臺(tái)燈的銷(xiāo)售價(jià)上漲元.
(1)試用含的代數(shù)式填空:
①漲價(jià)后,每個(gè)臺(tái)燈的銷(xiāo)售價(jià)為 元;
②漲價(jià)后,商場(chǎng)的臺(tái)燈平均每月的銷(xiāo)售量為 臺(tái);
③漲價(jià)后,商場(chǎng)每月銷(xiāo)售臺(tái)燈所獲得總利潤(rùn)為 元.
(2)如果商場(chǎng)要想銷(xiāo)售總利潤(rùn)平均每月達(dá)到20000元,商場(chǎng)經(jīng)理甲說(shuō)“在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲40元,可以完成任務(wù)”,商場(chǎng)經(jīng)理乙說(shuō)“不用漲那么多,在原售價(jià)每臺(tái)50元的基礎(chǔ)上再上漲30元就可以了”,試判斷經(jīng)理甲與乙的說(shuō)法是否正確,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若兩個(gè)二次函數(shù)圖象的頂點(diǎn)、開(kāi)口方向都相同,則稱(chēng)這兩個(gè)二次函數(shù)為“同簇二次函數(shù)”.
(1)請(qǐng)寫(xiě)出兩個(gè)為“同簇二次函數(shù)”的函數(shù);
(2)已知關(guān)于x的二次函數(shù)y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的圖象經(jīng)過(guò)點(diǎn)A(1,1),若y1+y2與y1為“同簇二次函數(shù)”,求函數(shù)y2的表達(dá)式,并求出當(dāng)0≤x≤3時(shí),y2的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示是長(zhǎng)方體紙盒的平面展開(kāi)圖,設(shè) AB=x cm,若 AD =4x cm,AN=3x cm.
(1)求長(zhǎng)方形 DEFG 的周長(zhǎng)與長(zhǎng)方形 ABMN 的周長(zhǎng)(用字母 x 進(jìn)行表示);
(2)若長(zhǎng)方形 DEFG 的周長(zhǎng)比長(zhǎng)方形 ABMN 的周長(zhǎng)少 8cm,求 x 的值;
(3)在第(2)問(wèn)的條件下,求原長(zhǎng)方體紙盒的容積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識(shí)答題競(jìng)賽”,初、高中部根據(jù)初賽成績(jī)各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽,兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計(jì)算出a、b、c的值;
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù)進(jìn)行分析,哪個(gè)隊(duì)的決賽成績(jī)較好?
(3)計(jì)算初中代表隊(duì)決賽成績(jī)的方差s初中2,并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長(zhǎng)都為的大正方形,兩塊是邊長(zhǎng)都為的小正方形,五塊是長(zhǎng)為、寬為的全等小矩形,且> .(以上長(zhǎng)度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數(shù)式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個(gè)正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長(zhǎng)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校要圍一個(gè)矩形花圃,其一邊利用足夠長(zhǎng)的墻,另三邊用籬笆圍成,由于園藝需要,還要用一段籬笆將花圃分隔為兩個(gè)小矩形部分(如圖所示),總共36米的籬笆恰好用完(不考慮損耗).設(shè)矩形垂直于墻面的一邊AB的長(zhǎng)為x米(要求AB<AD),矩形花圃ABCD的面積為S平方米.
(1)求S與x之間的函數(shù)關(guān)系式,并直接寫(xiě)出自變量x的取值范圍;
(2)要想使矩形花圃ABCD的面積最大,AB邊的長(zhǎng)應(yīng)為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)5+(﹣ )﹣7﹣(﹣2.5)
(3)(﹣)×(﹣)+(﹣)×(+)
(4)
(5)8﹣23÷(﹣4)3+
(6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣ )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com