【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)AC分別在x軸、y軸的正半軸上,且ABy軸,AB4,△ABC的面積為2,將△ABC以點(diǎn)B為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DBE,一反比例函數(shù)圖象恰好過(guò)點(diǎn)D時(shí),則此反比例函數(shù)解析式是_____

【答案】y=﹣

【解析】

先根據(jù)三角形的面積公式求得OA的長(zhǎng),得到點(diǎn)B的坐標(biāo),再根據(jù)旋轉(zhuǎn)的性質(zhì)得BDBA4,∠DBA90°,則BDx軸,再求出D點(diǎn)的坐標(biāo),然后利用待定系數(shù)法求出反比例函數(shù)解析式.

解:∵ABy軸,AB4,△ABC的面積為2,

SABCABOA×4×OA2OA2,

OA1,

B1,4).

∵將△ABC以點(diǎn)B為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°得到△DBE,

ABBD4,∠ABD90°,

DBx軸,

設(shè)DBy軸交于點(diǎn)F,

DFDBBF413

D(﹣34),

設(shè)反比例解析式為y

k=﹣3×4=﹣12

∴此反比例函數(shù)解析式是y=﹣

故答案為y=﹣

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知點(diǎn),點(diǎn)在反比例函數(shù)的圖象上,軸于點(diǎn)連結(jié)于點(diǎn),若,則的面積比為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點(diǎn)C,交弦AB于點(diǎn)D.已知:AB, CD.

1)求作此殘片所在的圓(不寫(xiě)作法,保留作圖痕跡)

2)求(1)中所作圓的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,過(guò)矩形的對(duì)角線的中點(diǎn),交邊于點(diǎn),交邊于點(diǎn),分別連接、.若,則的長(zhǎng)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)AB.拋物線過(guò)A、B兩點(diǎn),點(diǎn)P是線段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)PPCx軸于點(diǎn)C,交拋物線于點(diǎn)D

1)如圖1,設(shè)拋物線頂點(diǎn)為M,且M的坐標(biāo)是(,),對(duì)稱(chēng)軸交AB于點(diǎn)N

求拋物線的解析式;

是否存在點(diǎn)P,使四邊形MNPD為菱形?并說(shuō)明理由;

2)是否存在這樣的點(diǎn)D,使得四邊形BOAD的面積最大?若存在,求出此時(shí)點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,線段AC⊙O的直徑,過(guò)A點(diǎn)作直線BF⊙OAB兩點(diǎn),過(guò)A點(diǎn)作∠FAC的角平分線交⊙OD,過(guò)DAF的垂線交AFE

1)證明DE⊙O的切線;

2)證明AD22AEOA;

3)若⊙O的直徑為10DE+AE4,求AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線軸交于點(diǎn),軸交于點(diǎn),拋物線經(jīng)過(guò)兩點(diǎn),與軸的另一交點(diǎn)為

1)求拋物線的解析式;

2為拋物線上一點(diǎn),直線軸交于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo);

3)在直線下方的拋物線上是否存在點(diǎn),使得,如果存在這樣的點(diǎn),請(qǐng)求出點(diǎn)的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)是菱形邊上一點(diǎn),點(diǎn)的延長(zhǎng)線上

1)如圖,若,,求的度數(shù);

2)如圖,若的中點(diǎn),,求的值;

3)如圖,若,點(diǎn)是線段的中點(diǎn),求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案