【題目】某校為了進一步開展“陽光體育”活動,計劃用2000元購買乒乓球拍,用2800元購買羽毛球拍.已知一副羽毛球拍比一副乒乓球拍貴14元.該校購買的乒乓球拍與羽毛球拍的數(shù)量能相同嗎?請說明理由.

【答案】解:不能相同. 理由如下:
假設能相等,設乒乓球拍每一個x元,羽毛球拍就是x+14.
根據(jù)題意得方程:
解得x=35.
經(jīng)檢驗得出,x=35是原方程的解,
但是當x=35時,2000÷35不是一個整數(shù),這不符合實際情況,所以不可能
【解析】假設能相等,設乒乓球拍每一個x元,羽毛球拍就是x+14,得方程 ,進而求出x=35,再利用2000÷35不是一個整數(shù),得出答案即可.
【考點精析】解答此題的關鍵在于理解分式方程的應用的相關知識,掌握列分式方程解應用題的步驟:審題、設未知數(shù)、找相等關系列方程、解方程并驗根、寫出答案(要有單位).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以Rt△ABC的直角邊AB為直徑作⊙O,交斜邊AC于點D,點E為OB的中點,連接CE并延長交⊙O于點F,點F恰好落在 的中點,連接AF并延長與CB的延長線相交于點G,連接OF.

(1)求證:OF= BG;
(2)若AB=4,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為放置在水平桌面上的臺燈的平面示意圖,燈臂AO長為40cm,與水平面所形成的夾角∠OAM為75°.由光源O射出的邊緣光線OC,OB與水平面所形成的夾角∠OCA,∠OBA分別為90°和30°,求該臺燈照亮水平面的寬度BC(不考慮其他因素,結果精確到0.1cm.溫馨提示:sin75°≈0.97,cos75°≈0.26, ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為1的半圓形紙片,按如圖方式折疊,使對折后圓弧的中點M與圓心O重合,則圖中陰影部分的面積是.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是CD的中點,點F在BC上,且FC= BC.圖中相似三角形共有(
A.1對
B.2對
C.3對
D.4對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+b(b>4)與x軸、y軸分別相交于點A、B,與反比例函數(shù) 的圖象相交于點C、D(點C在點D的左側),⊙O是以CD長為半徑的圓.CE∥x軸,DE∥y軸,CE、DE相交于點E.
(1)△CDE是三角形;點C的坐標為 , 點D的坐標為(用含有b的代數(shù)式表示);
(2)b為何值時,點E在⊙O上?
(3)隨著b取值逐漸增大,直線y=x+b與⊙O有哪些位置關系?求出相應b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】26.如圖,在四邊形ABCD中,∠DAB=∠ABC=90°,CD與以AB為直徑的半圓相切于點E,EF⊥AB于點F,EF交BD于點G,設AD=a,BC=b.
(1)求CD的長度(用a,b表示);
(2)求EG的長度(用a,b表示);
(3)試判斷EG與FG是否相等,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算或化簡:
(1) +20120+|﹣3|﹣4cos30°
(2)1﹣

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,經(jīng)過點A(0,﹣4)的拋物線y= x2+bx+c與x軸相交于B(﹣2,0),C兩點,O為坐標原點.

(1)求拋物線的解析式;
(2)將拋物線y= x2+bx+c向上平移 個單位長度,再向左平移m(m>0)個單位長度得到新拋物線,若新拋物線的頂點P在△ABC內(nèi),求m的取值范圍;
(3)設點M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.

查看答案和解析>>

同步練習冊答案