【題目】已知二次函數(shù),完成下列各題:
將函數(shù)關(guān)系式用配方法化為的形式,并寫(xiě)出它的頂點(diǎn)坐標(biāo)、對(duì)稱軸.
求出它的圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo).
在直角坐標(biāo)系中,畫(huà)出它的圖象.
根據(jù)圖象說(shuō)明:當(dāng)為何值時(shí),;當(dāng)為何值時(shí),.
【答案】(1),頂點(diǎn)(2,9),對(duì)稱軸x=2
(2)與x軸交點(diǎn)(5,0)(-1,0),與y軸交點(diǎn)(0,5)
(3)圖略
(4)當(dāng)-1<x<5時(shí),y>0,當(dāng)x>5或x<-1時(shí),y<0。
【解析】
試題(1)用配方法整理,進(jìn)而得出頂點(diǎn)坐標(biāo)和對(duì)稱軸即可;
(2)讓函數(shù)值為0,求得一元二次方程的兩個(gè)解即為這個(gè)二次函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)的橫坐標(biāo),讓x=0,可求得拋物線與y軸的交點(diǎn)坐標(biāo);找到與y軸的交點(diǎn),x軸的交點(diǎn),對(duì)稱軸,即可畫(huà)出大致圖象;
(3)由(1)和(2)中的條件即可畫(huà)出它的圖象;
(4)分別找到x軸上方和下方函數(shù)圖象所對(duì)應(yīng)的自變量的取值即可.
試題解析:(1)y=-x2+4x+5=-(x2-4x+4)+9=-(x-2)2+9;
故它的頂點(diǎn)坐標(biāo)為(2,9)、對(duì)稱軸為:x=2;(2)圖象與x軸相交是y=0,則:
0=-(x-2)2+9,
解得x1=5,x2=-1,
∴這個(gè)二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo)為(5,0),(-1,0);
當(dāng)x=0時(shí),y=5,
∴與y軸的交點(diǎn)坐標(biāo)為(0,5);
(3)畫(huà)出大致圖象為
;
4)-1<x<5時(shí) y>0;x<-1或x>5時(shí) y<0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為12,點(diǎn)O為對(duì)角線AC、BD的交點(diǎn),點(diǎn)E在CD上,tan∠CBE= ,過(guò)點(diǎn)C作CF⊥BE,垂足為F,連接OF,將△OCF繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到△ODG,連接FG、FD,則△DFG的面積是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)I為△ABC的內(nèi)心,連AI交△ABC的外接圓于點(diǎn)D,若AI=2CD,點(diǎn)E為弦AC的中點(diǎn),連接EI,IC,若IC=6,ID=5,則IE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結(jié)論的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,DE交AC于點(diǎn)E,且∠A=∠ADE.
(1)求證:DE是⊙O的切線;
(2)若AD=16,DE=10,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一直角三角形紙片,邊,,,將該直角三角形紙片沿折疊,使點(diǎn)與點(diǎn)重合,則四邊形的周長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究
(1)如圖①,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別是邊BC、CD上兩點(diǎn),且BM=CN,連接AM和BN,交于點(diǎn)P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.
(2)如圖②,已知正方形ABCD的邊長(zhǎng)為4.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CD方向向終點(diǎn)C和D運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P,求△APB周長(zhǎng)的最大值;
問(wèn)題解決
(3)如圖③,AC為邊長(zhǎng)為2的菱形ABCD的對(duì)角線,∠ABC=60°.點(diǎn)M和N分別從點(diǎn)B、C同時(shí)出發(fā),以相同的速度沿BC、CA向終點(diǎn)C和A運(yùn)動(dòng).連接AM和BN,交于點(diǎn)P.求△APB周長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是邊AD、CD上的點(diǎn),AE=ED,DF=DC,連接EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G.
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com