精英家教網 > 初中數學 > 題目詳情

【題目】在平面內,對于給定的,如果存在一個半圓或優(yōu)弧與的兩邊相切,且該弧上的所有點都在的內部或邊上,則稱這樣的弧為的內切。攦惹谢〉陌霃阶畲髸r,稱該內切弧為的完美內切。ㄗⅲ夯〉陌霃街冈摶∷趫A的半徑)

在平面直角坐標系中,

1)如圖1,在弧,弧,弧中,是的內切弧的是____________

2)如圖2,若弧G的內切弧,且弧G與邊相切,求弧G的半徑的最大值;

3)如圖3,動點,連接

①直接寫出的完美內切弧的半徑的最大值;

②記①中得到的半徑最大時的完美內切弧為弧T.點P為弧T上的一個動點,過點Px軸的垂線,分別交x軸和直線于點DE,點F為線段的中點,直接寫出線段長度的取值范圍.

【答案】1)弧,弧.(23 3)①

【解析】

1)根據內切弧定義即可解答;

2)由內切弧定義可知弧G所在圓的圓心上的角平分線上,弧G的半徑最大時其圓心I的邊上.再由勾股定理即可計算出半徑最大值;

解:(1)由圖可知,弧是半圓,弧是優(yōu)弧,它們與的兩邊相切,且該弧上的所有點都在的內部或邊上,故弧,弧的內切。欢只與一邊相切,而且是劣弧,故弧不是的內切;,

,弧

2)∵弧G的內切弧,且弧G與邊相切,

∴弧G所在圓的圓心上的角平分線上.

易知若弧G的半徑最大,則弧G所在圓的圓心I的邊上.設弧G與邊相切分別切于點O,H

,

中,,即

解得

3)①的完美內切弧半徑的最大值為

理由如下:由內切弧定義可知,內切弧的圓心在相切兩邊的夾角的角平分線上,而完美內切弧的圓心在最大內角的角平分線與其對邊的交點上,

動點 ,

則有垂直平分OB,
MO=MB
MB+MA=MO+MA
根據兩點之間線段最短可得:當B、MA三點共線時,即M點在AB的中點(4,3)MO+MA取到最小值,最小值為AB=10

I.當內切弧與OMMA相切時,如圖:

的完美內切弧半徑為r
=12,且,


MO+MA取最小值10時,此時r取到最大值,最大值為

II.當完美內切弧與OM、OA相切時,或與MA、OA相切時,相切兩邊的和為:,

同理可知,這兩種情況的內切弧的半徑最大值小于完美內切弧與OMMA相切時的半徑.

綜上所述:的完美內切弧是內切弧與OM、MA相切時的半徑的最大值為

②線段長度的取值范圍是

由①可知:的完美內切弧的圓心O坐標為(4,0),半徑為

由圖解3-2-1,解3-2-2,解3-2-3,解3-2-4,可知,當DE經過切點Q的時候,DF最大為3

由圖解3-2-5可知,當DE與半圓右側相切的時候,DF最小為 ;

而當ED經過AB與半圓相切的切點時,此時F點不存在,DF= ,

∴線段長度的取值范圍是

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,RtAOB中,∠AOB=90°,頂點A在反比例函數則點B所在的反比例函數解析式為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖①,在平面直角坐標系中,拋物線yax2bxca≠0)經過點D2,4),與x軸交于A,B兩點,與y軸交于點C0,4),連接AC,CD,BC, 其且AC=5

1)求拋物線的解析式;

2)如圖②,點P是拋物線上的一個動點,過點Px軸的垂線l,l分別交x軸于點E,交直線AC于點M.設點P的橫坐標為m.當0<m≤2時,過點MMGBC,MGx軸于點G,連接GC,則m為何值時,△GMC的面積取得最大值,并求出這個最大值;

3)當-1<m≤2時,是否存在實數m,使得以P,C,M為頂點的三角形和△AEM相似?若存在,求出相應m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點P是平面內任意一點,點AB上不重合的兩個點,連結.當時,我們稱點P的“關于的關聯(lián)點”.

1)如圖2,當點P上時,點P的“關于的關聯(lián)點”時,畫出一個滿足條件的,并直接寫出的度數;

2)在平面直角坐標系中有點,點M關于y軸的對稱點為點N

以點O為圓心,為半徑畫,在y軸上存在一點P,使點P“關于的關聯(lián)點”,直接寫出點P的坐標;

x軸上一動點,當的半徑為1時,線段上至少存在一點是關于某兩個點的關聯(lián)點,求m的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】堅持節(jié)約資源和保護環(huán)境是我國的基本國策,國家要求加強生活垃圾分類回收與再生資源回收有效銜接,提高全社會資源產出率,構建全社會的資源循環(huán)利用體系.

1反映了2014—2019年我國生活垃圾清運量的情況.

2反映了2019年我國G市生活垃圾分類的情況.

根據以上材料回答下列問題:

1)圖2中,n的值為___________;

22014—2019年,我國生活垃圾清運量的中位數是_________

3)據統(tǒng)計,2019G市清運的生活垃圾中可回收垃圾約為0.02億噸,所創(chuàng)造的經濟總價值約為40億元.若2019年我國生活垃圾清運量中,可回收垃圾的占比與G市的占比相同,根據G市的數據估計2019年我國可回收垃圾所創(chuàng)造的經濟總價值是多少.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知⊙O及⊙O上一點P,過點P作⊙O的切線.

小明設計了如下尺規(guī)作法:

①連接OP,以點P為圓心,OP長為半徑畫弧交⊙O于點A;

②連接OA,延長OAB,使AB=OA,作直線PB.則直線即為所求作.

1)請證明小明作法的正確性;

2)請你自己再設計一種尺規(guī)作圖方法(保留痕跡,不要證明).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在趣味運動會定點投籃項目中,我校七年級八個班的投籃成績單位:個分別為:24,2019,20,2223,20,則這組數據中的眾數和中位數分別是  

A. 22個、20 B. 22個、21 C. 20個、21 D. 20個、22

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD內部有若干個點,則用這些點以及正方形ABCD的頂點A、BC、D把原正方形分割成一些三角形(互相不重疊):

1)填寫下表:

正方形ABCD內點的個數

1

2

3

4

...

n

分割成三角形的個數

4

6

_____

_____

...

_____

2)原正方形能否被分割成2021個三角形?若能,求此時正方形ABCD內部有多少個點?若不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB9AD6,點O為對角線AC的中點,點EDC的延長線上且CE1.5,連接OE,過點OOFOECB延長線于點F,連接FE并延長交AC的延長線于點G,則_____

查看答案和解析>>

同步練習冊答案