【題目】已知拋物線的對稱軸是直線x=﹣1,與x軸一個交點(diǎn)是點(diǎn)A(﹣3,0),且經(jīng)過點(diǎn)B(﹣2,6)
(1)求該拋物線的解析式;
(2)若點(diǎn)(﹣,y1)與點(diǎn)(2,y2)都在該拋物線上,直接寫出y1與y2的大小關(guān)系.
【答案】(1)y=﹣2x2﹣4x+6;(2)y1>y2.
【解析】
(1)先利用對稱性確定拋物線與x軸另一個交點(diǎn)坐標(biāo)為(1,0),則可設(shè)交點(diǎn)式為y=a(x+3)(x﹣1),然后把B點(diǎn)坐標(biāo)代入求出a即可;
(2)根據(jù)二次函數(shù)的性質(zhì),通過比較點(diǎn)(﹣,y1)和點(diǎn)(2,y2)到直線x=﹣1的距離大小確定y1與y2的大小關(guān)系.
解:(1)∵拋物線的對稱軸是直線x=﹣1,與x軸一個交點(diǎn)是點(diǎn)A(﹣3,0),
∴拋物線與x軸另一個交點(diǎn)坐標(biāo)為(1,0),
設(shè)拋物線解析式為y=a(x+3)(x﹣1),
把B(﹣2,6)代入得a×1×(﹣3)=6,解得a=﹣2,
∴拋物線解析式為y=﹣2(x+3)(x﹣1),即y=﹣2x2﹣4x+6;
(2)∵點(diǎn)(﹣,y1)到直線x=﹣1的距離比點(diǎn)(2,y2)到直線x=﹣1的距離要小,
而拋物線的開口向下,
∴y1>y2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線DF是⊙O的切線,D為切點(diǎn),交CB的延長線于點(diǎn)E.
(1)求證:DF⊥AC;
(2)求tan∠E的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年12月16日,南京大報恩寺遺址公園正式對外開放.某校數(shù)學(xué)興趣小組想測量大報恩塔的高度.如圖,成員小明利用測角儀在B處測得塔頂?shù)难鼋铅?63.5°,然后沿著正對該塔的方向前進(jìn)了13.1m到達(dá)E處,再次測得塔頂?shù)难鼋铅?71.6°.測角儀BD的高度為1.4m,那么該塔AC的高度是多少?(參考數(shù)據(jù):sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表記錄了一名球員在罰球線上投籃的結(jié)果,這么球員投籃一次,投中的概率約是( )
投籃次數(shù) | 10 | 50 | 100 | 150 | 200 | 250 | 300 | 500 |
投中次數(shù) | 4 | 35 | 60 | 78 | 104 | 123 | 152 | 251 |
投中頻率 | 0.40 | 0.70 | 0.60 | 0.52 | 0.52 | 0.49 | 0.51 | 0.50 |
A. 0.7B. 0.6C. 0.5D. 0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在水果銷售旺季,某水果店購進(jìn)一優(yōu)質(zhì)水果,進(jìn)價為20元/千克,售價不低于20元/千克,且不超過32元/千克,根據(jù)銷售情況,發(fā)現(xiàn)該水果一天的銷售量y(千克)與該天的售價x(元/千克)滿足如下表所示的一次函數(shù)關(guān)系.
銷售量y(千克) | … | 34.8 | 32 | 29.6 | 28 | … |
售價x(元/千克) | … | 22.6 | 24 | 25.2 | 26 | … |
(1)某天這種水果的售價為23.5元/千克,求當(dāng)天該水果的銷售量.
(2)如果某天銷售這種水果獲利150元,那么該天水果的售價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=a(x﹣m﹣1)2+2m(其中m>0)與其對稱軸l相交于點(diǎn)P.與y軸相交于點(diǎn)A(0,m)連接并延長PA、PO,與x軸、拋物線分別相交于點(diǎn)B、C,連接BC將△PBC繞點(diǎn)P逆時針旋轉(zhuǎn),使點(diǎn)C落在拋物線上,設(shè)點(diǎn)C、B的對應(yīng)點(diǎn)分別是點(diǎn)B′和C′.
(1)當(dāng)m=1時,該拋物線的解析式為: .
(2)求證:∠BCA=∠CAO;
(3)試問:BB′+BC﹣BC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市有一種“喜之郎“果凍禮盒,內(nèi)裝兩個上下倒置的果凍,果凍高為4cm,底面是個直徑為6cm的圓,軸截面可以近似地看作一個拋物線,為了節(jié)省成本,包裝應(yīng)盡可能的小,這個包裝盒的長不計重合部分,兩個果凍之間沒有擠壓至少為
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市實施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包荒山種植某品種蜜柚.已知該蜜柚的成本價為6元/千克,到了收獲季節(jié)投入市場銷售時,調(diào)查市場行情后,發(fā)現(xiàn)該蜜柚不會虧本,且每天的銷售量y(千克)與銷售單價x(元)之間的函數(shù)關(guān)系如圖所示.
(1)求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)當(dāng)該品種蜜柚定價為多少時,每天銷售獲得的利潤最大?最大利潤是多少?
(3)某村農(nóng)戶今年共采摘蜜柚12000千克,若該品種蜜柚的保質(zhì)期為50天,按照(2)的銷售方式,能否在保質(zhì)期內(nèi)全部銷售完這批蜜柚?若能,請說明理由;若不能,應(yīng)定銷售價為多少元時,既能銷售完又能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只箱子里共有3個球,其中2個白球,1個紅球,它們除顏色外均相同。
(1)從箱子中任意摸出一個球是白球的概率是多少?
(2)從箱子中任意摸出一個球,不將它放回箱子,攪勻后再摸出一個球,求兩次摸出球的都是白球的概率,并畫出樹狀圖。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com