【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長(zhǎng)線相交于點(diǎn)E,AB、DC的延長(zhǎng)線相交于點(diǎn)F.若∠E+∠F=80°,則∠A= °.
【答案】50
【解析】
試題分析:連結(jié)EF,如圖,根據(jù)圓內(nèi)接四邊形的性質(zhì)得∠A+∠BCD=180°,根據(jù)對(duì)頂角相等得∠BCD=∠ECF,則∠A+∠ECF=180°,根據(jù)三角形內(nèi)角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形內(nèi)角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,則∠A+80°+∠A=180°,然后解方程即可.
解:連結(jié)EF,如圖,
∵四邊形ABCD內(nèi)接于⊙O,
∴∠A+∠BCD=180°,
而∠BCD=∠ECF,
∴∠A+∠ECF=180°,
∵∠ECF+∠1+∠2=180°,
∴∠1+∠2=∠A,
∵∠A+∠AEF+∠AFE=180°,
即∠A+∠AEB+∠1+∠2+∠AFD=180°,
∴∠A+80°+∠A=180°,
∴∠A=50°.
故答案為:50.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次安全知識(shí)測(cè)驗(yàn)中,學(xué)生得分均為整數(shù),滿分10分,這次測(cè)驗(yàn)中甲、乙兩組學(xué)生人數(shù)都為6人,成績(jī)?nèi)缦拢▎挝唬悍郑?/span>
甲:7,9,10,8,5,9;
乙:9,6,8,10,7,8
(1)請(qǐng)補(bǔ)充完整下面的成績(jī)統(tǒng)計(jì)分析表:
平均分 | 方差 | 眾數(shù) | 中位數(shù) | |
甲組 | 8 |
| 9 |
|
乙組 |
| 8 | 8 |
(2)甲組學(xué)生說他們的眾數(shù)高于乙組,所以他們的成績(jī)好于乙組,但乙組學(xué)生不同意甲組學(xué)生的說法,認(rèn)為他們組的成績(jī)要好于甲組,請(qǐng)你給出一條支持乙組學(xué)生觀點(diǎn)的理由. .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列定理中,哪些有逆定理?如果有逆定理,請(qǐng)寫出逆定理.
(1)同旁內(nèi)角互補(bǔ),兩直線平行.
(2)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)完一次函數(shù)后,小榮遇到過這樣的一個(gè)新穎的函數(shù):y=|x﹣1|,小榮根據(jù)學(xué)校函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=|x﹣1|的圖象與性質(zhì)進(jìn)行了探究.下面是小榮的探究過程,請(qǐng)補(bǔ)充完成:
(1)列表:下表是y與x的幾組對(duì)應(yīng)值,請(qǐng)補(bǔ)充完整.
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … | 4 | 2 | 1 | … |
(2)描點(diǎn)連線:在平面直角坐標(biāo)系xOy中,請(qǐng)描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象的最低點(diǎn)的坐標(biāo)是(1,0),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其他性質(zhì)(一條即可): .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于函數(shù)y=﹣2x+1,下列結(jié)論正確的是( )
A.它的圖象必經(jīng)過點(diǎn)(﹣1,2)
B.它的圖象經(jīng)過第一、二、三象限
C.當(dāng)x>1時(shí),y<0
D.y的值隨x值的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,點(diǎn)D是BC的中點(diǎn),過點(diǎn)C作CE⊥AB,垂足為點(diǎn)E,交AD于點(diǎn)F.
(1)求證:AE=CE;
(2)求證:△AEF≌△CEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一條船從海島A出發(fā),以25海里/時(shí)的速度向正東方向航行,2小時(shí)后到達(dá)海島B處,從A、B望燈塔C,測(cè)得∠DBC=68°,∠DAC=34°,求海島B與燈塔C的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程4x2+1=4x的根的情況是( 。
A. 沒有實(shí)數(shù)根 B. 只有一個(gè)實(shí)數(shù)根
C. 有兩個(gè)相等的實(shí)數(shù)根 D. 有兩個(gè)不相等的實(shí)數(shù)根
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com