【題目】盒子里裝有12張紅色卡片,16張黃色卡片,4張黑色卡片和若干張藍(lán)色卡片,每張卡片除顏色外都相同,從中任意摸出一張卡片,摸到紅色卡片的概率是0.24.

(1)從中任意摸出一張卡片,摸到黑色卡片的概率是多少?

(2)求盒子里藍(lán)色卡片的個(gè)數(shù).

【答案】(1)摸到黑色卡片的概率是0.08;(2)盒子里藍(lán)色卡片的個(gè)數(shù)是18.

【解析】

(1)根據(jù)概率的定義和任意抽出一張是紅色卡片的概率為0.24求出卡片的總張數(shù),再根據(jù)概率公式求出摸到黑色卡片的概率;

(2)用卡片的總張數(shù)分別減去紅色卡片,黃色卡片,黑色卡片的張數(shù),即可得出藍(lán)色卡片張數(shù).

(1)由題意得卡片的總張數(shù)為=50,

則任意摸出一張卡片,摸到黑色卡片的概率是=0.08;

(2)盒子里藍(lán)色卡片的個(gè)數(shù)是:50﹣12﹣16﹣4=18.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=8,BC=12,點(diǎn)E是BC的中點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)F處,連接FC,則sin∠ECF=( 。

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市實(shí)施居民用水階梯價(jià)格制度,按年度用水量計(jì)算,將居民家庭全年用水量劃分為三個(gè)階梯,水價(jià)按階梯遞增:

第一階梯:年用水量不超過(guò)200噸,每噸水價(jià)為3;

第二階梯:年用水量超過(guò)200噸但不超過(guò)300噸的部分,每噸水價(jià)為3. 5;

第三階梯:年用水量超過(guò)300噸的部分,每噸水價(jià)為6.

(1)小明家2018年用水180噸,這一年應(yīng)繳納水費(fèi) ;

(2)小亮家2018年繳納水費(fèi)810元,則小亮家這一年用水多少噸?

(3)小紅家2017年和2018年共用水600噸,共繳納水費(fèi)1950元,并且2018年的用水量超過(guò)2017年的用水量,則小紅家2017年和2018年各用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】重慶實(shí)驗(yàn)外國(guó)語(yǔ)學(xué)校運(yùn)動(dòng)會(huì)期間,小明和小歡兩人打算勻速?gòu)慕淌遗艿?/span>600米外的操場(chǎng)參加入場(chǎng)式,出發(fā)時(shí)小明發(fā)現(xiàn)鞋帶松了,停下來(lái)系鞋帶,小歡繼續(xù)跑往操場(chǎng),小明系好鞋帶后立即沿同一路線開(kāi)始追趕小歡.小明在途中追上小歡后繼續(xù)前行,小明到達(dá)操場(chǎng)時(shí)入場(chǎng)式還沒(méi)有開(kāi)始,于是小明站在操場(chǎng)等待,小歡繼續(xù)前往操場(chǎng).設(shè)小明和小歡兩人相距(米),小歡行走的時(shí)間為(分鐘),關(guān)于的函數(shù)圖像如圖所示,則在整個(gè)運(yùn)動(dòng)過(guò)程中,小明和小歡第一次相距米后,再過(guò)_____分鐘兩人再次相距米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)長(zhǎng)方形的長(zhǎng)和寬分別為x厘米和y厘米(xy為正整數(shù)),如果將長(zhǎng)方形的長(zhǎng)和寬各增加5厘米得到新的長(zhǎng)方形,面積記為,將長(zhǎng)方形的長(zhǎng)和寬各減少2厘米得到新的長(zhǎng)方形,面積記為

1)請(qǐng)說(shuō)明:的差一定是7的倍數(shù).

2)如果196,求原長(zhǎng)方形的周長(zhǎng).

3)如果一個(gè)面積為的長(zhǎng)方形和原長(zhǎng)方形能夠沒(méi)有縫隙沒(méi)有重疊的拼成一個(gè)新的長(zhǎng)方形,請(qǐng)找出xy的關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ABD,∠ACD的角平分線交于點(diǎn)P,若∠A50°,∠D10°,求∠P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)是,點(diǎn)的坐標(biāo)是,點(diǎn)和點(diǎn)關(guān)于原點(diǎn)對(duì)稱,點(diǎn)是直線位于軸右側(cè)部分圖象上一點(diǎn),連接,已知

1)求直線的解析式;

2)如圖2,沿著直線平移得,平移后的點(diǎn)與點(diǎn)重合.點(diǎn)為直線上的一動(dòng)點(diǎn),當(dāng)的值最小時(shí),請(qǐng)求出的最小值及此時(shí)點(diǎn)的坐標(biāo);

3)如圖3,將沿直線是翻折得點(diǎn)為平面內(nèi)任意一動(dòng)點(diǎn),在直線上是否存在一點(diǎn),使得以點(diǎn)為頂點(diǎn)的四邊形是矩形;若存在,請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫(xiě)成另一個(gè)式子的平方,如32=(12,善于思考的小明進(jìn)行了以下探索:設(shè)ab=(mn2(其中ab,m,n均為正整數(shù)),則有abm22n22mn,∴am22n2,b2mn

這樣小明就找到了一種把ab的式子化為平方式的方法.

請(qǐng)你仿照小明的方法探索并解決下列問(wèn)題:

1)當(dāng)a,b,m,n均為正整數(shù)時(shí),若ab=(mn2,用含mn的式子分別表示a,b,得a b ;

2)利用所探索的結(jié)論,找一組正整數(shù)a,b,m,n填空:42 =(1 2;(答案不唯一)

3)若a4=(mn2,且am,n均為正整數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題提出)

學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對(duì)兩個(gè)三角形滿足兩邊和其中一邊的對(duì)角對(duì)應(yīng)相等的情形進(jìn)行研究.

(初步思考)

我們不妨將問(wèn)題用符號(hào)語(yǔ)言表示為:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對(duì)∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角三種情況進(jìn)行探究.

(深入探究)

第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF

1)如圖,在△ABC△DEF,AC=DF,BC=EF∠B=∠E=90°,根據(jù) ,可以知道Rt△ABC≌Rt△DEF

第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF

2)如圖,在△ABC△DEF,AC=DFBC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF

第三種情況:當(dāng)∠B是銳角時(shí),△ABC△DEF不一定全等.

3)在△ABC△DEFAC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請(qǐng)你用尺規(guī)在圖中作出△DEF,使△DEF△ABC不全等.(不寫(xiě)作法,保留作圖痕跡)

4∠B還要滿足什么條件,就可以使△ABC≌△DEF?請(qǐng)直接寫(xiě)出結(jié)論:在△ABC△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 ,則△ABC≌△DEF

查看答案和解析>>

同步練習(xí)冊(cè)答案