【題目】小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如32=(12,善于思考的小明進行了以下探索:設ab=(mn2(其中a,bm,n均為正整數(shù)),則有abm22n22mn,∴am22n2,b2mn

這樣小明就找到了一種把ab的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

1)當a,b,m,n均為正整數(shù)時,若ab=(mn2,用含m,n的式子分別表示a,b,得a ,b

2)利用所探索的結論,找一組正整數(shù)a,b,m,n填空:42 =(1 2;(答案不唯一)

3)若a4=(mn2,且a,m,n均為正整數(shù),求a的值.

【答案】1m23n2,2mn;(2(答案不唯一);(3713

【解析】

1)利用完全平方公式展開得到(m+n2=m2+3n2+2mn,從而可用m、n表示a、b
2)取m=2,n=1,則計算對應的a、b的值,然后填空即可;
3)利用a=m2+3n22mn=4a、m、n均為正整數(shù)可先確定m、n的值,然后計算對應的a的值.

解:(1)(m+n2=m2+3n2+2mn,∴a=m2+3n2,b=2mn,

故答案為:m23n22mn;
2)取m=2,n=1,則a=7b=4,∴7+4=2+2

故答案為:,(答案不唯一);
3a=m2+3n2,2mn=4
a、mn均為正整數(shù),
m=2n=1m=1,n=2
m=2,n=1時,a=4+3=7,
m=1,n=2時,a=1+3×4=13,
a的值為713

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】操作發(fā)現(xiàn):

如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°且小于30°),旋轉后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.

(1)填空:①∠EAF的度數(shù)是 °;② EDFE的數(shù)量關系是 .

類比探究:

(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(旋轉角大于0°小于45°),旋轉后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.

①求∠EAF的度數(shù).

②請寫出線段AE,ED,DB之間的關系,并證明所寫結論的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盒子里裝有12張紅色卡片,16張黃色卡片,4張黑色卡片和若干張藍色卡片,每張卡片除顏色外都相同,從中任意摸出一張卡片,摸到紅色卡片的概率是0.24.

(1)從中任意摸出一張卡片,摸到黑色卡片的概率是多少?

(2)求盒子里藍色卡片的個數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°AC3BC4.分別以AB,ACBC為邊在AB的同側作正方形ABEF,ACPQ,BCMN,四塊陰影部分的面積分別為S1S2,S3,S4,則S1S2S3S4等于____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,∠ABC60°,點EF分別在CDBC的延長線上,AEBDEFBC,CF

1)求證:四邊形ABDE是平行四邊形;

2)求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD的邊長為6,△ABE是等邊三角形,點E在正方形ABCD內,在對角線AC上有一點P,使PD+PE的和最小,則這個最小值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是用4個全等的直角三角形與1個小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個說法:

,,.

其中說法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一點,EC⊥BC,EC=BD,DF=FE.

求證:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=6,OC=4,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù) 的圖象與BC邊交于點E.

(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案