【題目】在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于第二、第四象限內(nèi)的A,B兩點,與y軸交于C點,過A作AH⊥y軸,垂足為H,AH=4,tan∠AOH= ,點B的坐標為(m,﹣2).
(1)求△AHO的周長;
(2)求該反比例函數(shù)和一次函數(shù)的解析式.
【答案】
(1)解:∵AH⊥y軸于點H,
∴∠AHO=90°,
∴tan∠AOH= ,AH=4,
∴OH=3,
∴由勾股定理可求出OA=5,
∴△AHO的周長為3+4+5=12
(2)解:由(1)可知:點A的坐標為(﹣4,3),
把(﹣4,3)代入y= ,
∴k=﹣12
∴反比例函數(shù)的解析式為:y=﹣
∵把B(m,﹣2)代入反比例函數(shù)y=﹣ 中
∴m=6,
∴點B的坐標為(6,﹣2)
將A(﹣4,3)和B(6,﹣2)代入y=ax+b
∴
解得:
∴一次函數(shù)的解析式為:y=﹣ x+1
【解析】(1)根據(jù)tan∠AOH= 求出AH的長度,由勾股定理可求出OH的長度即可求出△AHO的周長.(2)由(1)可知:點A的坐標為(﹣4,3),點A在反比例函數(shù)y= 的圖象上,從而可求出k的值,將點B的坐標代入反比例函數(shù)的解析式中求出m的值,然后將A、B兩點的坐標代入一次函數(shù)解析式中即可求出該一次函數(shù)的解析式.
【考點精析】解答此題的關鍵在于理解解直角三角形的相關知識,掌握解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知第一象限內(nèi)的點A在反比例函數(shù)y= 上,第二象限的點B在反比例函數(shù)y= 上,且OA⊥OB,tanA= ,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=3,BC=4,點E是BC邊上一點,連接AE,把∠B沿AE折疊,使點B落在點B′處.當△CEB′為直角三角形時,BE的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數(shù)是( )
①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:3.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC,BD交于點O,E為AB中點,點F在CB的延長線上,且EF∥BD.
(1)求證;四邊形OBFE是平行四邊形;
(2)當線段AD和BD之間滿足什么條件時,四邊形OBFE是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD中,M為CD中點,分別以點B、M為圓心,以BC長、MC長為半徑畫弧,兩弧相交于點P.若∠PMC=110°,則∠BPC的度數(shù)為( )
A.35°
B.45°
C.55°
D.65°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據(jù)圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發(fā)后1小時,兩人行程均為10km;③出發(fā)后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有( 。
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com