【題目】如圖,已知等腰三角形ABC的底角為30°,以BC為直徑的⊙O與底邊AB交于點D,過DDE⊥AC,垂足為E.

(1)證明:DE⊙O的切線;

(2)BC=4,求陰影部分的面積.

【答案】(1)證明見解析(2)

【解析】

(1)連接OD,CD,由以BC為直徑的⊙O,可得∠BDC=90°,又由等腰△ABC的底角為30°,可得AD=BD,即可證得OD∥AC,繼而可證得結(jié)論;(2)根據(jù)三角函數(shù)的性質(zhì),求得CD、CE、DE的長,根據(jù)S=S四邊形ODEC﹣S扇形ODC即可求得陰影部分的面積

(1)證明:連接OD,CD,

BC為O直徑,

∴∠BDC=90°,

∵△ABC是等腰三角形,

∴AD=BD,

∵OB=OC,

∴OD∥AC,

∵DE⊥AC,

∴OD⊥DE,

DE為O的切線;

(2)∵∠A=∠B=30°,BC=4,

∴CD=BC=2,CE=CD=1,DE=CDcos30°=,

∴S=S四邊形ODEC﹣S扇形ODC=(1+2)×=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)圖象的一部分,圖象過點A(-30),對稱軸為直線x=1,給出四個結(jié)論:①c0②若點B(-1.5,y1)C(-2.5,y2)為函數(shù)圖象上的兩點,則y1y22ab=0; 0.其中正確結(jié)論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作發(fā)現(xiàn):如圖,點D是等邊△ABC的邊AB上一動點(點D與點B不重合),連接CD,以CD為邊在CD上方作等邊△CDE,連接AE,則AEBD有怎樣的數(shù)量關(guān)系?說明理由.

2)類比猜想:如圖,若點D是等邊△ABC的邊BA延長線上一動點,連接CD,以CD為邊在CD上方作等邊CDE,連接AE,請直接寫出AEBD滿足的數(shù)量關(guān)系,不必說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在△ABC中,∠A=90°,AB=6,AC=8,點P在邊AC上,且⊙PAB,BC都相切.

(1)求⊙P半徑;

(2)求sin∠PBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABDC,BFCE,需補充一個條件,就能使ABE≌△DCF,小明給出以下四個答案:①AEDF;②AEDF;③ABDC;④∠A=∠D,其中正確的是(  )

A.①②③④B.①②③C.①②D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中,∠CAB=90°,AC=AB=3,△CDE中,CDE=90°,CD=DE=5,連接BE,取BE中點F,連接AF、DF.

(1)如圖1,若C、B、E三點共線,H為BC中點.

直接指出AF與DF的關(guān)系   ;

直接指出FH的長度   

(2)將圖(1)中的CDE繞C點逆時針旋轉(zhuǎn)a(如圖2,0°<α<180°),試確定AF與DF的關(guān)系,并說明理由;

(3)在(2)中,若AF=,請直接指出點F所經(jīng)歷的路徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】低碳生活,綠色出行的理念已深入人心,現(xiàn)在越來越多的人選擇騎自行車上下班或外出旅游.周末,小紅相約到郊外游玩,她從家出發(fā)0.5小時后到達甲地,玩一段時間后按原速前往乙地,剛到達乙地,接到媽媽電話,快速返回家中.小紅從家出發(fā)到返回家中,行進路程y(km)隨時間x(h)變化的函數(shù)圖象大致如圖所示.

(1)小紅從甲地到乙地騎車的速度為  km/h;

(2)當(dāng)1.5≤x≤2.5時,求出路程y(km)關(guān)于時間x(h)的函數(shù)解析式;并求乙地離小紅家多少千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,點B、F、C、E在同一直線上,AC、DF相交于點G,ABBE,垂足為B,DEBE,垂足為E,且AC=DF,BF=EC.求證:

(1)ABC≌△DEF

(2)FG=CG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標系中,ABC的三個頂點的坐標分別為A(1,5),B(1-2),C(40).

1)請在圖中畫出ABC關(guān)于y軸對稱的.

2)求ABC的面積.

3)在y軸上畫出點P,使PA+PC的值最小,保留作圖痕跡.

查看答案和解析>>

同步練習(xí)冊答案