【題目】二次函數(shù)y=ax2+bx+ca0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;當(dāng)m1時(shí),a+b>am2+bm④a-b+c>0;ax12+bx1=ax22+bx2,且x1x2x1+x2=2.其中正確的有(

A.B.C.①②D.②③

【答案】D

【解析】

根據(jù)拋物線的對(duì)稱性得拋物線的對(duì)稱軸為直線x1,根據(jù)拋物線對(duì)稱軸方程得1,則可對(duì)①進(jìn)行判斷;由拋物線開口方向得到a0,由b2ab0,由拋物線與y軸的交點(diǎn)在x軸上方得到c0,則可對(duì)②進(jìn)行判斷;利用x1時(shí),函數(shù)有最大值對(duì)③進(jìn)行判斷;根據(jù)二次函數(shù)圖象的對(duì)稱性得拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)與(10)之間,則x1時(shí),y0,于是可對(duì)④進(jìn)行判斷;由ax12bx1ax2bx2得到對(duì)稱軸為x==1,可對(duì)⑤進(jìn)行判斷.

∵拋物線開口向下,

a0,

∵拋物線對(duì)稱軸為x1,即b2a,

b0,

∵拋物線與y軸的交點(diǎn)在x軸上方,

c0,∴abc0,

所以①錯(cuò)誤;

b2a,∴2ab0,

所以②正確;

x1時(shí),函數(shù)值最大,

abcambmc,即aba m2bmm1),

所以③正確;

∵拋物線與x軸的交點(diǎn)到對(duì)稱軸x1的距離大于1,

∴拋物線與x軸的一個(gè)交點(diǎn)在點(diǎn)(20)與(3,0)之間,

∴拋物線與x軸的另一個(gè)交點(diǎn)在點(diǎn)(0,0)與(10)之間,

x1時(shí),y0,∴abc0,

所以④錯(cuò)誤;

當(dāng)ax12bx1a x22bx2x1x2,

∴對(duì)稱軸為x==1,∴x1+x2=2,

所以⑤正確;

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E、F分別是BC,AD邊上的點(diǎn),且AE=CF,若ACEF,試判斷四邊形AECF的形狀,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場(chǎng)銷售每臺(tái)進(jìn)價(jià)分別為400元、340元的A、B兩種型號(hào)的電風(fēng)扇,下表是該型號(hào)電風(fēng)扇近兩周的銷售情況:

銷售時(shí)段

銷售數(shù)量

銷售收入

A種型號(hào)

B種型號(hào)

第一周

3臺(tái)

5臺(tái)

3600

第二周

4臺(tái)

10臺(tái)

6200

1)求AB兩種型號(hào)的電風(fēng)扇的銷售單價(jià);

2)若該商場(chǎng)準(zhǔn)備用不多于1.14萬元的金額再采購(gòu)這兩種型號(hào)的電風(fēng)扇共30臺(tái),假設(shè)售價(jià)不變,那么商場(chǎng)應(yīng)采用哪種采購(gòu)方案,才能使得當(dāng)銷售完這些風(fēng)扇后,商場(chǎng)獲利最多?最多可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 某網(wǎng)店銷售一種產(chǎn)品.這種產(chǎn)品的成本價(jià)為10/件,已知銷售價(jià)不低于成本價(jià),且物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于18/件市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(件)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示:

1)當(dāng)12x18時(shí),求yx之間的函數(shù)關(guān)系式;

2)求每天的銷售利潤(rùn)w(元)與銷售價(jià)x(元/件)之間的函數(shù)關(guān)系式并求出每件銷售價(jià)為多少元時(shí).每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知:點(diǎn)(x,y)在直線y=x+1上,且x2+y2=2,求x7+y7的值.

(2)計(jì)算:

(3)已知a、b、c是直角三角形△ABC的角A、BC所對(duì)的邊,∠C=90°.求:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+mm為常數(shù))的圖象與x軸交于A(﹣3,0),與y軸交于點(diǎn)C.以直線x=﹣1為對(duì)稱軸的拋物線yax2+bx+cab,c為常數(shù),且a0)經(jīng)過A,C兩點(diǎn),與x軸正半軸交于點(diǎn)B
1)求一次函數(shù)及拋物線的函數(shù)表達(dá)式;

2P為線段AC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)PCA不重合)過Px軸的垂線與這個(gè)二次函數(shù)的圖象交于點(diǎn)D,連接CD,AD,點(diǎn)P的橫坐標(biāo)為n,當(dāng)n為多少時(shí),CDA的面積最大,最大面積為多少?

3)在對(duì)稱軸上是否存在一點(diǎn)E,使∠ACB=∠AEB?若存在,求點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,AB=5cm,AC=4cm,線段AC上有一動(dòng)點(diǎn)E,連接BE,ED,∠BED=∠A=60°,設(shè)A,E兩點(diǎn)間的距離為xcm,C,D兩點(diǎn)間的距離為ycm.

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.下面是小明的探究過程,請(qǐng)補(bǔ)充完整.

(1)列表:如表的已知數(shù)據(jù)是根據(jù)A,E兩點(diǎn)間的距離x進(jìn)行取點(diǎn)、畫圖、測(cè)量,分別得到了x與y的幾組對(duì)應(yīng)值:

x/cm

0

0.5

1

1.5

2

2.3

2.5

y/cm

0

0.39

0.75

1.07

1.33

1.45

    

x/cm

2.8

3.2

3.5

3.6

3.8

3.9

y/cm

1.53

1.42

1.17

1.03

0.63

0.35

請(qǐng)你補(bǔ)全表格;

(2)描點(diǎn)、連線:在平面直角坐標(biāo)系xOy中,描出表中各組數(shù)值所對(duì)應(yīng)的點(diǎn)(x,y),并畫出函數(shù)y關(guān)于x的圖象;

(3)探究性質(zhì):隨著自變量x的不斷增大,函數(shù)y的變化趨勢(shì):    ;

(4)解決問題:當(dāng)AE=2CD時(shí),CD的長(zhǎng)度大約是    cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,點(diǎn)內(nèi)一個(gè)動(dòng)點(diǎn),且滿足,當(dāng)線段取最小值時(shí),記,線段上一動(dòng)點(diǎn)繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到點(diǎn),且滿足 ,則的最小值為 _____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一所中學(xué)九年級(jí)240名同學(xué)參加植樹活動(dòng),要求每人植47棵,活動(dòng)結(jié)束后隨機(jī)抽查了20名學(xué)生每人的植樹數(shù)量,所分四個(gè)類別為,A:植4棵;B:植5棵;C:植6棵;D:植7棵.將各類別人數(shù)繪制成扇形圖和條形圖.經(jīng)確認(rèn)扇形圖是正確的,而條形圖尚有一處錯(cuò)誤.

1)指出條形圖中存在的錯(cuò)誤,并說明理由.

2)指出樣本的眾數(shù)、中位數(shù).

3)估計(jì)在全年級(jí)隨機(jī)抽取1人,植樹5棵的概率.

4)估計(jì)全年級(jí)240名同學(xué)這次共植樹多少棵.(精確到10棵)

查看答案和解析>>

同步練習(xí)冊(cè)答案