【題目】 某網(wǎng)店銷(xiāo)售一種產(chǎn)品.這種產(chǎn)品的成本價(jià)為10元/件,已知銷(xiāo)售價(jià)不低于成本價(jià),且物價(jià)部門(mén)規(guī)定這種產(chǎn)品的銷(xiāo)售價(jià)不高于18元/件市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系如圖所示:
(1)當(dāng)12≤x≤18時(shí),求y與x之間的函數(shù)關(guān)系式;
(2)求每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式并求出每件銷(xiāo)售價(jià)為多少元時(shí).每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?
【答案】(1)y=﹣x+42(12≤x≤18);(2)w=,當(dāng)x=18元時(shí).銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是192元
【解析】
(1)依據(jù)題意,根據(jù)圖象利用待定系數(shù)法,即可求得銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式:
(2)根據(jù)銷(xiāo)售利潤(rùn)=銷(xiāo)售量×(售價(jià)-進(jìn)價(jià)),列出每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/件)之間的函數(shù)關(guān)系式,再依據(jù)函數(shù)的增減性求得最大利潤(rùn).
解:(1)依題意,設(shè)y與x之間的函數(shù)關(guān)系式為:y=kx+b
將點(diǎn)(12,30)(18,24)代入得
,解得
∴當(dāng)12≤x≤18時(shí), y與x之間的函數(shù)關(guān)系式:y=﹣x+42(12≤x≤18)
(2)依題意,得w=y(x﹣10)
則有w=
當(dāng)10≤x<12時(shí),最大利潤(rùn)為w=60元
當(dāng)12≤x≤18時(shí), w=﹣x2+52x﹣420=﹣(x﹣26)2+256
∵a=﹣1<0
∴拋物線(xiàn)開(kāi)口向下,故當(dāng)12≤x≤18時(shí),w隨x的增大而增大
∴當(dāng)x=18時(shí),有最大值得w=192元
故當(dāng)x=18元時(shí).銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是192元,此時(shí)銷(xiāo)售的件數(shù)為24件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)M滿(mǎn)足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)M叫做“整點(diǎn)”.例如:P(1,0)、Q(2,﹣2)都是“整點(diǎn)”.拋物線(xiàn)y=mx2﹣4mx+4m﹣2(m>0)與x軸交于點(diǎn)A、B兩點(diǎn),若該拋物線(xiàn)在A、B之間的部分與線(xiàn)段AB所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則m的取值范圍是( 。
A. ≤m<1B. <m≤1C. 1<m≤2D. 1<m<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對(duì)應(yīng)值如表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論錯(cuò)誤的是( 。
A.ac<0
B.當(dāng)x>1時(shí),y的值隨x的增大而減小
C.3是方程ax2+(b﹣1)x+c=0的一個(gè)根
D.當(dāng)﹣1<x<3時(shí),ax2+(b﹣1)x+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
(1)求證:四邊形AECD是菱形;
(2)若點(diǎn)E是AB的中點(diǎn),試判斷△ABC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自2016年共享單車(chē)上市以來(lái),給人們的出行提供了便利,受到了廣大市民的青睞,某公司為了了解員工上下班回家的路程(設(shè)路程為x千米)情況,隨機(jī)抽取了若干名員工進(jìn)行了問(wèn)卷調(diào)查,現(xiàn)將這些員工的調(diào)查結(jié)果分為四個(gè)等級(jí),A:0≤x≤3;B:3<x≤6;C:6<x≤9;D:x>9;并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖:
(1)請(qǐng)補(bǔ)全上面的條形統(tǒng)計(jì)圖,并求m和n的值;
(2)在扇形統(tǒng)計(jì)圖中,求扇形“C”所對(duì)應(yīng)的圓心角α的度數(shù);
(3)若該公司有600名員工,請(qǐng)你估計(jì)該公司路程在6千米以上選擇共享單車(chē)上下班的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a、b、c為正數(shù),若關(guān)于x的一元二次方程ax2+bx+c=0有兩個(gè)實(shí)數(shù)根,則關(guān)于x的方程a2x2+b2x+c2=0解的情況為( )
A.有兩個(gè)不相等的正根B.有一個(gè)正根,一個(gè)負(fù)根
C.有兩個(gè)不相等的負(fù)根D.不一定有實(shí)數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖,下列結(jié)論:①abc>0;②2a+b=0;③當(dāng)m≠1時(shí),a+b>am2+bm;④a-b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正確的有( )
A.②④B.②⑤C.①②③D.②③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD=4,∠C=90°,點(diǎn)B在線(xiàn)段CD上,,沿AB所在的直線(xiàn)折疊△ACB得到△AC′B,若△DC′B是以BC'為腰的等腰三角形,則線(xiàn)段CB的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OABC的一邊在x軸上,反比例函數(shù)的圖象經(jīng)過(guò)菱形對(duì)角線(xiàn)的交點(diǎn),且與AB所在直線(xiàn)交于點(diǎn)D,已知,,則以下結(jié)論:①;②點(diǎn)D的縱坐標(biāo)為;③.其中正確的個(gè)數(shù)有
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com