【題目】二次函數(shù)的部分圖象如圖,圖象過點(﹣1,0),對稱軸為直線,下列結(jié)論:①;②;③;④當時, 隨的增大而增大.其中正確的結(jié)論有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
【題目】平面內(nèi)的兩條直線有相交和平行兩種位置關系
(1)如圖a,若AB∥CD,點P在AB、CD外部,則有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.將點P移到AB、CD內(nèi)部,如圖b,以上結(jié)論是否成立?若成立,說明理由;若不成立,則∠BPD、∠B、∠D之間有何數(shù)量關系?請證明你的結(jié)論;
(2)在圖b中,將直線AB繞點B逆時針方向旋轉(zhuǎn)一定角度交直線CD于點Q,如圖c,則∠BPD、∠B、∠D、∠BQD之間有何數(shù)量關系?(不需證明)
(3)根據(jù)(2)的結(jié)論求圖d中∠A+∠B+∠C+∠D+∠E+∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】供電局的電力維修工要到30千米遠的郊區(qū)進行電力搶修.技術(shù)工人騎摩托車先走,15分鐘后,搶修車裝載著所需材料出發(fā),結(jié)果他們同時到達.已知搶修車的速度是摩托車的1.5倍,求這兩種車的速度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知∠MAN=120°,AC平分∠MAN.
(1)在圖1中,若∠ABC=∠ADC=90°,求證:AB+AD=AC;
(2)在圖2中,若∠ABC+∠ADC=180°,則(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】魔術(shù)大師夏爾巴比耶90歲時定義了一個魔法三角陣,三角陣中含有四個區(qū)域(三個“邊區(qū)域”和一個“核心區(qū)域”,如圖1中的陰影部分),每個區(qū)域都含有5個數(shù),把差相同的連續(xù)九個正整數(shù)填進三角陣中,每個區(qū)域的5個數(shù)的和必須相同。例如:圖2中,把相差為1的九個數(shù)(1至9)填入后,三個“邊區(qū)域”及“核心區(qū)域”的數(shù)的和都是22,即6+1+9+2+4=22,4+2+8+3+5=22,5+3+7+1+6=22,2+9+1+7+3=22
(1)操作與發(fā)現(xiàn):
在圖3中,小明把差為1的連續(xù)九個正整數(shù)(1至9)分為三組,其中1、2、3為同一組,4、5、6為同一組,7、8、9為同一組,把同組數(shù)填進同一花紋的△中,生成了一個符合定義的魔法三角陣,且各區(qū)域的5個數(shù)的和為28,請你在圖3中把小明的發(fā)現(xiàn)填寫完整.
(2)操作與應用:
根據(jù)(1)發(fā)現(xiàn)的結(jié)果,把差為8的連續(xù)九個正整數(shù)填進圖4中,仍能得到符合定義的魔法三角陣,且各區(qū)域的5個數(shù)的和為2019.
①設其中最小的數(shù)為,則最大的數(shù)是_________;(用含的式子表示).
②把圖4中的9個數(shù)填寫完整,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC.
(1)若AB=4,AC=5,則BC邊的取值范圍是 ;
(2)點D為BC延長線上一點,過點D作DE∥AC,交BA的延長線于點E,若∠E=55°,∠ACD=125°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,一螞蟻從A點出發(fā),沿著A→B→C→D→A…循環(huán)爬行,其中A點的坐標為(2,﹣2),B點的坐標為(﹣2,﹣2),C點的坐標為(﹣2,6),D點的坐標為(2,6),當螞蟻爬了2018個單位時,螞蟻所處位置的坐標為( 。
A. (﹣2,0)B. (4,﹣2)C. (﹣2,4)D. (0,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過, 兩點.
(1)求對應的函數(shù)表達式;
(2)將先向左平移1個單位,再向上平移4個單位,得到拋物線,將對應的函數(shù)表達式記為,求對應的函數(shù)表達式;
(3)設,在(2)的條件下,如果在≤x≤a內(nèi)存在某一個x的值,使得≤成立,根據(jù)函數(shù)圖象直接寫出a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形紙片ABCD置于直角坐標系中,AB∥x軸,BC∥y軸,AB=4,BC=3,點B(5,1)翻折矩形紙片使點A落在對角線DB上的H處得折痕DG.
(1)求AG的長;
(2)在坐標平面內(nèi)存在點M(m,-1)使AM+CM最小,求出這個最小值;
(3)求線段GH所在直線的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com