【題目】為弘揚(yáng)遵義紅色文化,傳承紅色文化精神,某校準(zhǔn)備組織學(xué)生開展研學(xué)活動(dòng).經(jīng)了解,有A.遵義會(huì)議會(huì)址、B.茍壩會(huì)議會(huì)址、C.婁山關(guān)紅軍戰(zhàn)斗遺址、D.四渡赤水紀(jì)念館共四個(gè)可選擇的研學(xué)基地.現(xiàn)隨機(jī)抽取部分學(xué)生對(duì)基地的選擇進(jìn)行調(diào)查,每人必須且只能選擇一個(gè)基地.根據(jù)調(diào)查結(jié)果繪制如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)統(tǒng)計(jì)圖中m   ,n   

2)若該校有1500名學(xué)生,請(qǐng)估計(jì)選擇B基地的學(xué)生人數(shù);

3)某班在選擇B基地的4名學(xué)生中有2名男同學(xué)和2名女同學(xué),需從中隨機(jī)選出2名同學(xué)擔(dān)任“小導(dǎo)游”,請(qǐng)用樹狀圖或列舉法求這2名同學(xué)恰好是一男一女的概率.

【答案】156,15;(2555人;(3

【解析】

1)先由C類別人數(shù)及其所占百分比求出總?cè)藬?shù),再進(jìn)一步求解可得;

2)用總?cè)藬?shù)乘以樣本中選擇B基地的學(xué)生人數(shù)所占比例即可得;

3)根據(jù)題意畫出樹狀圖得出所有等情況數(shù),找出選出的2名學(xué)生恰好是一男一女的情況數(shù),然后根據(jù)概率公式即可得出答案.

解:(1)由題意可知:總?cè)藬?shù)為40÷20%200(人)

所以m200×28%56(人),n%×100%15%,即n15,

故答案為:56,15;

2)估計(jì)選擇B基地的學(xué)生人數(shù)1500×555(人);

3)根據(jù)題意畫出樹狀圖如下:

一共有12種情況,恰好是11女的情況有8種,

2名同學(xué)恰好是一男一女的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某社區(qū)工作人員在社區(qū)隨機(jī)抽取了若干名居民開展環(huán)保知識(shí)有獎(jiǎng)問答活動(dòng),并用得到的數(shù)據(jù)繪制了如圖所示條形統(tǒng)計(jì)圖(得分為整數(shù),滿分為10分,最低分為6分).

請(qǐng)根據(jù)圖中信息,解答下列問題:

1)本次調(diào)查一共抽取了__________名居民;

2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù);并直接寫出樣本數(shù)據(jù)的眾數(shù)和中位數(shù);

3)社區(qū)決定對(duì)該小區(qū)500名居民開展這項(xiàng)有獎(jiǎng)問答活動(dòng),得10分者設(shè)為一等獎(jiǎng).根據(jù)調(diào)查結(jié)果,請(qǐng)你幫社區(qū)工作人員直接估計(jì)出需準(zhǔn)備多少份一等獎(jiǎng)獎(jiǎng)品.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快智慧校園建設(shè),某縣準(zhǔn)備為試點(diǎn)學(xué)校采購一批 、 兩種型號(hào)的一體機(jī).經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),今年每套 型一體機(jī)的價(jià)格比每套 型一體機(jī)的價(jià)格多 萬元,且用萬元恰好能購買 型一體機(jī)和 型一體機(jī).

1)求今年每套 型、 型一體機(jī)的價(jià)格各是多少萬元?

2)該縣明年計(jì)劃采購 型、 型一體機(jī)共 套,需投入資金 萬元. 考慮物價(jià)因素,預(yù)計(jì)明年每套 型一體機(jī)的價(jià)格不變,每套 型一體機(jī)的價(jià)格比今年上漲 , 設(shè)該市明年購買 型一體機(jī) .

請(qǐng)寫出該縣明年需投入資金 (萬元)與購買 型一體機(jī) (套)之間的函數(shù)關(guān)系式 ;

若該縣明年購買 型一體機(jī)的總費(fèi)用不低于購買 型一體機(jī)的總費(fèi)用,那么該縣明年至少需要投入多少萬元才能完成采購計(jì)劃?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 將一列有理數(shù)﹣1,2,﹣3,4,﹣5,6…如圖所示有序排列,4所在位置為峰1,﹣9所在位置為峰2….

1)處在峰5位置的有理數(shù)是_____;

22022應(yīng)排在AB,CD,E_____的位置上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,對(duì)于任意的三個(gè)點(diǎn)A、BC,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行,且A,B,C三點(diǎn)都在矩形的內(nèi)部或邊界上,則稱該矩形為點(diǎn)A,B,C的“三點(diǎn)矩形”.在點(diǎn)A,B,C的所有“三點(diǎn)矩形”中,若存在面積最小的矩形,則稱該矩形為點(diǎn)A,B,C的“最佳三點(diǎn)矩形”.

如圖1,矩形DEFG,矩形IJCH都是點(diǎn)AB,C的“三點(diǎn)矩形”,矩形IJCH是點(diǎn)A,BC的“最佳三點(diǎn)矩形”.

如圖2,已知M4,1),N(﹣2,3),點(diǎn)Pm,n).

1m1,n4,則點(diǎn)M,N,P的“最佳三點(diǎn)矩形”的周長(zhǎng)為   ,面積為   

m1,點(diǎn)M,N,P的“最佳三點(diǎn)矩形”的面積為24,求n的值;

2)若點(diǎn)P在直線y=﹣2x+4上.

求點(diǎn)MNP的“最佳三點(diǎn)矩形”面積的最小值及此時(shí)m的取值范圍;

當(dāng)點(diǎn)M,NP的“最佳三點(diǎn)矩形”為正方形時(shí),求點(diǎn)P的坐標(biāo);

3)若點(diǎn)Pm,n)在拋物線yax2+bx+c上,且當(dāng)點(diǎn)M,NP的“最佳三點(diǎn)矩形”面積為12時(shí),﹣2m≤﹣11m3,直接寫出拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上、斜邊長(zhǎng)分別為2,4,6,…的等腰直角三角形.若△A1A2A3的頂點(diǎn)坐標(biāo)分別為A12,0),A21,﹣1),A30,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1),以原點(diǎn)O為中心,將點(diǎn)A順時(shí)針旋轉(zhuǎn)150°得到點(diǎn)A′,則點(diǎn)A′的坐標(biāo)為( )

A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的頂點(diǎn)在第一象限,點(diǎn)、的坐標(biāo)分別為、,,直線軸于點(diǎn),若關(guān)于點(diǎn)成中心對(duì)稱,則點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖像與坐標(biāo)軸交于點(diǎn)和點(diǎn)

1)求該二次函數(shù)的解析式;

2)已知該函數(shù)圖像的對(duì)稱軸上存在一點(diǎn),使得的周長(zhǎng)最。(qǐng)求出點(diǎn)的坐標(biāo);

3)在(2)的條件下,在軸上找一點(diǎn),使得是等腰三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案