【題目】小明對(duì)某市出租汽車(chē)的計(jì)費(fèi)問(wèn)題進(jìn)行研究,他搜集了一些資料,部分信息如下:

收費(fèi)項(xiàng)目

收費(fèi)標(biāo)準(zhǔn)

3公里以?xún)?nèi)收費(fèi)

13元

基本單價(jià)

2.3元/公里

……

……

備注:出租車(chē)計(jì)價(jià)段里程精確到500米;出租汽車(chē)收費(fèi)結(jié)算以元為單位,元以下四舍五入。

小明首先簡(jiǎn)化模型,從簡(jiǎn)單情形開(kāi)始研究:①只考慮白天正常行駛(無(wú)低速和等候);②行駛路程3公里以上時(shí),計(jì)價(jià)器每500米計(jì)價(jià)1次,且每1公里中前500米計(jì)價(jià)1.2元,后500米計(jì)價(jià)1.1元.

下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:

記一次運(yùn)營(yíng)出租車(chē)行駛的里程數(shù)為(單位:公里),相應(yīng)的實(shí)付車(chē)費(fèi)為(單位:元).

(1)下表是yx的變化情況

行駛里程數(shù)x

0

0<x<3.5

3.5≤x<4

4≤x<4.5

4.5≤x<5

5≤x<5.5

實(shí)付車(chē)費(fèi)y

0

13

14

15

(2)在平面直角坐標(biāo)系中,畫(huà)出當(dāng)時(shí)變化的函數(shù)圖象;

(3)一次運(yùn)營(yíng)行駛公里()的平均單價(jià)記為(單位:元/公里),其中.

當(dāng)時(shí),平均單價(jià)依次為,的大小關(guān)系是____________;(用“<”連接)

若一次運(yùn)營(yíng)行駛公里的平均單價(jià)不大于行駛?cè)我?/span>)公里的平均單價(jià),則稱(chēng)這次行駛的里程數(shù)為幸運(yùn)里程數(shù).請(qǐng)?jiān)谏蠄D中軸上表示出(不包括端點(diǎn))之間的幸運(yùn)里程數(shù)的取值范圍.

【答案】見(jiàn)解析

【解析】分析: 1)根據(jù)計(jì)費(fèi)標(biāo)準(zhǔn)完成表格即可.

2)根據(jù)(1)中的表格畫(huà)出圖象即可.

(3)①平均單價(jià) 比較大小即可.

②根據(jù)幸運(yùn)里程數(shù)的概念進(jìn)行回答即可.

1

行駛里程數(shù)x

0

0x3.5

3.5≤x4

4≤x4.5

4.5≤x5

5≤x5.5

實(shí)付車(chē)費(fèi)y

0

13

14

15

17

18

(2)如圖所示:

3)① ;

②如上圖所示.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,ABCD,兩條對(duì)角線交于點(diǎn)E.已知ABE的面積是a,CDE的面積是b,則梯形ABCD的面積是( 。

A. a2+b2 B. (a+b) C. D. (a+b)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】彈簧掛上物體后會(huì)伸長(zhǎng),測(cè)得一彈簧的長(zhǎng)度y(cm)與所掛重物的質(zhì)量x(kg)有下面的關(guān)系,那么彈簧總長(zhǎng)y(cm)與所掛重物x(kg)之間的關(guān)系式為( )

A. yx+12 B. y=0.5x+12

C. y=0.5x+10 D. yx+10.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形中,, 的中點(diǎn),連接并延長(zhǎng),交于點(diǎn)恰好是的中點(diǎn).

(1)求的值;

(2)若,求證:四邊形是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,EBC邊的中點(diǎn),將△ABE沿AE所在直線折疊得到△AGE,延長(zhǎng)AGCD于點(diǎn)F,已知CF2FD1,則BC的長(zhǎng)是( 。

A.3B.2C.2D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,∠BAD60°,ACBD交于點(diǎn)O,ECD延長(zhǎng)線上的一點(diǎn),且CDDE,連結(jié)BE分別交ACAD于點(diǎn)F、G,連結(jié)OG,則下列結(jié)論:①OGAB;②與EGD全等的三角形共有5個(gè);③S四邊形ODGFSABF;④由點(diǎn)A、B、D、E構(gòu)成的四邊形是菱形.其中正確的是( 。

A.①④B.①③④C.①②③D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F.

(1)求證:四邊形BEDF是平行四邊形;

(2)當(dāng)∠ABE為多少度時(shí),四邊形BEDF是菱形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點(diǎn),且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)C,E,F(xiàn),B在同一直線上,點(diǎn)A,DBC異側(cè),AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案